IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v135y2020ics0960077920302125.html
   My bibliography  Save this article

Chaotic behaviour of fractional predator-prey dynamical system

Author

Listed:
  • Kumar, Sunil
  • Kumar, Ranbir
  • Cattani, Carlo
  • Samet, Bessem

Abstract

In this endeavour, Bernstein wavelet and Euler methods are used to solve a nonlinear fractional predator-prey biological model of two species. The theoretical results with their corresponding biological consequence due to Bernstein wavelet are considered and discussed. A test problem of predator-prey model with two different cases are examined to determined the capability of our proposed methods. We showed that the obtained solutions are the most powerful and, wherever it is possible the comparison, in a very good coincidence with the other numerical solution. Few numerical simulations are finding for predator and prey populations and new chaotic behaviours of predator-prey population model are also obtained by using the Euler method. Moreover, a comparison have been done between the capability of the Bernstein wavelet and the Euler approach. The numerical simulations and behaviours of Rabies model are depicted through graphically which is a special case of predator-prey model.

Suggested Citation

  • Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302125
    DOI: 10.1016/j.chaos.2020.109811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiao & Xu, Tian-Zhou & Wang, Gang-Wei, 2018. "Numerical algorithm for time-fractional Sawada-Kotera equation and Ito equation with Bernstein polynomials," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 1-11.
    2. Thierry, Hugo & Sheeren, David & Marilleau, Nicolas & Corson, Nathalie & Amalric, Marion & Monteil, Claude, 2015. "From the Lotka–Volterra model to a spatialised population-driven individual-based model," Ecological Modelling, Elsevier, vol. 306(C), pages 287-293.
    3. Fernandez, Arran & Özarslan, Mehmet Ali & Baleanu, Dumitru, 2019. "On fractional calculus with general analytic kernels," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 248-265.
    4. Ghalib, M. Mansha & Zafar, Azhar A. & Riaz, M. Bilal & Hammouch, Z. & Shabbir, Khurram, 2020. "Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    5. Erfanian, Majid & Mansoori, Amin, 2019. "Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 223-237.
    6. Guo, Xiaoxia & Zhu, Chunjuan & Ruan, Dehao, 2019. "Dynamic behaviors of a predator–prey model perturbed by a complex type of noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1024-1037.
    7. Hajipour, Mojtaba & Jajarmi, Amin & Malek, Alaeddin & Baleanu, Dumitru, 2018. "Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 146-158.
    8. Ghanbari, Behzad & Kumar, Sunil & Kumar, Ranbir, 2020. "A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    9. Peng, Yahong & Zhang, Guoying, 2020. "Dynamics analysis of a predator–prey model with herd behavior and nonlocal prey competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 366-378.
    10. Mirzaee, Farshid & Samadyar, Nasrin, 2019. "Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 344, pages 191-203.
    11. Asgari, M. & Ezzati, R., 2017. "Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 290-298.
    12. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    13. Li, Haihong & Cong, Fuzhong, 2019. "Dynamics of a stochastic Holling–Tanner predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    14. Yousefi, S. & Razzaghi, M., 2005. "Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(1), pages 1-8.
    15. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alquran, Marwan & Yousef, Feras & Alquran, Farah & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2021. "Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 62-76.
    2. Ariza-Hernandez, Francisco J. & Martin-Alvarez, Luis M. & Arciga-Alejandre, Martin P. & Sanchez-Ortiz, Jorge, 2021. "Bayesian inversion for a fractional Lotka-Volterra model: An application of Canadian lynx vs. snowshoe hares," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Cecilia Berardo & Iulia Martina Bulai & Ezio Venturino, 2021. "Interactions Obtained from Basic Mechanistic Principles: Prey Herds and Predators," Mathematics, MDPI, vol. 9(20), pages 1-18, October.
    4. Ávalos-Ruíz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Cortes-Campos, H.M. & Lavín-Delgado, J.E., 2023. "A RGB image encryption technique using chaotic maps of fractional variable-order based on DNA encoding," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Izadi, Mohammad & Yüzbaşı, Şuayip & Adel, Waleed, 2022. "Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. McAllister, A. & McCartney, M. & Glass, D.H., 2023. "Stability, collapse and hyperchaos in a class of tri-trophic predator–prey models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    8. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Matouk, A.E. & Lahcene, Bachioua, 2023. "Chaotic dynamics in some fractional predator–prey models via a new Caputo operator based on the generalised Gamma function," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Feng, Yi-Ying & Yang, Xiao-Jun & Liu, Jian-Gen & Chen, Zhan-Qing, 2023. "Mechanical investigations of local fractional magnetorheological elastomers model on Cantor sets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    11. H. Mesgarani & Y. Esmaeelzade Aghdam & A. Beiranvand & J. F. Gómez-Aguilar, 2024. "A Novel Approach to Fuzzy Based Efficiency Assessment of a Financial System," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1609-1626, April.
    12. Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Xie, Jiaquan & Zhao, Fuqiang & He, Dongping & Shi, Wei, 2022. "Bifurcation and resonance of fractional cubic nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. A. E. Matouk & T. N. Abdelhameed & D. K. Almutairi & M. A. Abdelkawy & M. A. E. Herzallah, 2023. "Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems," Mathematics, MDPI, vol. 11(3), pages 1-13, January.
    16. Mohamed Elbadri & Mohamed A. Abdoon & Mohammed Berir & Dalal Khalid Almutairi, 2023. "A Numerical Solution and Comparative Study of the Symmetric Rossler Attractor with the Generalized Caputo Fractional Derivative via Two Different Methods," Mathematics, MDPI, vol. 11(13), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    2. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Khater, Mostafa M.A. & Attia, Raghda A.M. & Abdel-Aty, Abdel-Haleem & Alharbi, W. & Lu, Dianchen, 2020. "Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Beiglo, H. & Gachpazan, M., 2020. "Numerical solution of nonlinear mixed Volterra-Fredholm integral equations in complex plane via PQWs," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    6. Ahmad Sami Bataineh & Osman Rasit Isik & Moa’ath Oqielat & Ishak Hashim, 2021. "An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    7. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
    9. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    11. Khan, M. Ijaz & Qayyum, Sumaira & Farooq, Shahid & Chu, Yu-Ming & Kadry, Seifedine, 2021. "Modeling and simulation of micro-rotation and spin gradient viscosity for ferromagnetic hybrid (Manganese Zinc Ferrite, Nickle Zinc Ferrite) nanofluids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 497-509.
    12. Zhao, Hengzhi & Zhang, Jiwei & Lu, Jing, 2023. "Numerical approximate controllability for unidimensional parabolic integro-differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 575-596.
    13. Pimentel, Carlos Eduardo Hirth & Rodriguez, Pablo M. & Valencia, Leon A., 2020. "A note on a stage-specific predator–prey stochastic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    14. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Yang, Yin, 2019. "A computational method for solving variable-order fractional nonlinear diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 235-248.
    15. Ravichandran, C. & Sowbakiya, V. & Nisar, Kottakkaran Sooppy, 2022. "Study on existence and data dependence results for fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Mart Ratas & Jüri Majak & Andrus Salupere, 2021. "Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method," Mathematics, MDPI, vol. 9(21), pages 1-12, November.
    18. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    19. Reema Gupta & Snehashish Chakraverty, 2024. "Pseudo-Spectral Galerkin Method Using Shifted Vieta-Fibonacci Polynomials for Stochastic Models: Existence, Stability, and Numerical Validation," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-20, December.
    20. Danane, Jaouad & Allali, Karam & Hammouch, Zakia, 2020. "Mathematical analysis of a fractional differential model of HBV infection with antibody immune response," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.