IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001168.html
   My bibliography  Save this article

Dynamical aspects of pine wilt disease and control measures

Author

Listed:
  • Hussain, Takasar
  • Aslam, Adnan
  • Ozair, Muhammad
  • Tasneem, Fatima
  • Gómez-Aguilar, J.F.

Abstract

In this paper, we have inquired pine wilt disease (PWD) governed by a mathematical model to access its dynamics. By using next generation matrix method, we worked out for basic reproduction number R∘, which apprises us about the disease dissemination or control in the community. Two kinds of equilibria, disease absent and disease present, have been established. Stability of both equilibria has been discussed. Lypunove functional theory and graph theoretic approach are used for disease free and endemic equilibrium, respectively. The parameters, expressed in the model, captured the growth in case onsets and the estimated results are almost compatible with the studied actual reported cases. By using the estimated parameters, we found the sensitivity indices of the basic reproduction number through the calculation of ratio of relative change in the parameter to the relative change in R∘. Influence of the parameters on the number of infectious pines and bark beetles has also been observed by the variation of parameters. Keeping in mind those vital factors, calculated through sensitivity analysis, that can help to overcome the disease, an effective control strategy has been designed and optimal control problem has been formulated. To get in sight the comparison of analytical results with numerical ones, the problem has been reconsidered, and it has been seen that numerical results, obtained by using estimated parameters, express effectiveness of the applied controls to reduce pine wilt infection.

Suggested Citation

  • Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001168
    DOI: 10.1016/j.chaos.2021.110764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
    2. Xiangyun Shi & Guohua Song, 2013. "Analysis of the Mathematical Model for the Spread of Pine Wilt Disease," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, March.
    3. Din, Anwarud & Khan, Amir & Baleanu, Dumitru, 2020. "Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Ali, Khalid K. & Cattani, Carlo & Gómez-Aguilar, J.F. & Baleanu, Dumitru & Osman, M.S., 2020. "Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Bozkurt, Fatma & Yousef, Ali & Baleanu, Dumitru & Alzabut, Jehad, 2020. "A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    7. Sweilam, N.H. & AL-Mekhlafi, S.M. & Alshomrani, A.S. & Baleanu, D., 2020. "Comparative study for optimal control nonlinear variable-order fractional tumor model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    8. Karaca, Yeliz & Moonis, Majaz & Baleanu, Dumitru, 2020. "Fractal and multifractional-based predictive optimization model for stroke subtypes’ classification," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    9. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Muhammad Ozair, 2014. "Analysis of Pine Wilt Disease Model with Nonlinear Incidence and Horizontal Transmission," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, June.
    11. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Mahmoudi, Mohammad Reza & Baleanu, Dumitru & Mansor, Zulkefli & Tuan, Bui Anh & Pho, Kim-Hung, 2020. "Fuzzy clustering method to compare the spread rate of Covid-19 in the high risks countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Singh, Harendra & Baleanu, Dumitru & Singh, Jagdev & Dutta, Hemen, 2021. "Computational study of fractional order smoking model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    14. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2020. "Save the pine forests of wilt disease using a fractional optimal control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmood, Tariq & Al-Duais, Fuad S. & Sun, Mei, 2022. "Dynamics of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) involving fractional derivative with Mittag-Leffler kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Amouch, Mohamed & Karim, Noureddine, 2021. "Modeling the dynamic of COVID-19 with different types of transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Yusuf, Abdullahi & Tasiu Mustapha, Umar & Abdulkadir Sulaiman, Tukur & Hincal, Evren & Bayram, Mustafa, 2021. "Modeling the effect of horizontal and vertical transmissions of HIV infection with Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Abdullah, & Ahmad, Saeed & Owyed, Saud & Abdel-Aty, Abdel-Haleem & Mahmoud, Emad E. & Shah, Kamal & Alrabaiah, Hussam, 2021. "Mathematical analysis of COVID-19 via new mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Babaei, A. & Jafari, H. & Banihashemi, S. & Ahmadi, M., 2021. "Mathematical analysis of a stochastic model for spread of Coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Yu, Zhenhua & Arif, Robia & Fahmy, Mohamed Abdelsabour & Sohail, Ayesha, 2021. "Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Ali, Hegagi Mohamed & Ameen, Ismail Gad & Gaber, Yasmeen Ahmed, 2024. "The effect of curative and preventive optimal control measures on a fractional order plant disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 496-515.
    15. Zarin, Rahat & Khan, Amir & Inc, Mustafa & Humphries, Usa Wannasingha & Karite, Touria, 2021. "Dynamics of five grade leishmania epidemic model using fractional operator with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Kumar, Sunil & Kumar, Ajay & Samet, Bessem & Gómez-Aguilar, J.F. & Osman, M.S., 2020. "A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    17. Zai-Yin He & Abderrahmane Abbes & Hadi Jahanshahi & Naif D. Alotaibi & Ye Wang, 2022. "Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    18. Musrrat Ali & Hemant Gandhi & Amit Tomar & Dimple Singh, 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    19. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    20. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.