IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923008135.html
   My bibliography  Save this article

Composite iterative learning adaptive fuzzy control of fractional-order chaotic systems using robust differentiators

Author

Listed:
  • Zhang, Xiulan
  • Lin, Ming
  • Chen, Fangqi

Abstract

In conventional adaptive fuzzy control, to improve the approximation ability of fuzzy logic systems (FLSs), more fuzzy rules should be employed, which will greatly increase the computational burden. This paper investigates the adaptive fuzzy backstepping control of a specific category of incommensurate fractional-order chaotic systems afflicted by functional uncertainties and actuator faults. To address the challenging “explosion of complexity” issue, a novel modified fractional-order robust differentiator is proposed, capable of effectively suppressing noise. Importantly, an iterative learning adaptation law including parameter errors between adjacent periods and prediction errors derived from a series–parallel model is developed to improve the approximation accuracy of FLSs without using abundant fuzzy rules. Utilizing the frequency distribution model and the Lyapunov stability criterion, this approach guarantees the semi-global uniform boundedness of the closed-loop system and facilitates the convergence of tracking errors to a small region. Finally, the effectiveness of theoretical results is demonstrated through numerical simulation examples.

Suggested Citation

  • Zhang, Xiulan & Lin, Ming & Chen, Fangqi, 2023. "Composite iterative learning adaptive fuzzy control of fractional-order chaotic systems using robust differentiators," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008135
    DOI: 10.1016/j.chaos.2023.113912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Li & Wei, Jiang, 2015. "Fractional order nonlinear systems with delay in iterative learning control," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 546-552.
    2. Heng Liu & Hongling Qiu & Xiaoyan Zhang & Shenggang Li & Jinde Cao, 2022. "Composite Neural Network Learning From Fractional Backstepping," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(10), pages 1-12, December.
    3. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musrrat Ali & Hemant Gandhi & Amit Tomar & Dimple Singh, 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    2. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    3. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    4. Bezziou, Mohamed & Jebril, Iqbal & Dahmani, Zoubir, 2021. "A new nonlinear duffing system with sequential fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Izadi, Mohammad & Srivastava, H.M., 2021. "Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Luo, Lingao & Li, Lulu & Huang, Wei, 2024. "Asymptotic stability of fractional-order Hopfield neural networks with event-triggered delayed impulses and switching effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 491-504.
    8. Du, Feifei & Lu, Jun-Guo, 2021. "New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Mohamed Kharrat, 2023. "Stability Analysis for Pricing European Options Regarding the Interest Rate Generated by the Time Fractional Cox-Ingersoll-Ross Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-13, June.
    11. Babaei, A. & Ahmadi, M. & Jafari, H. & Liya, A., 2021. "A mathematical model to examine the effect of quarantine on the spread of coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    13. Chenchen Peng & Haiyi Yang & Anqing Yang & Ling Ren, 2024. "A New Observer Design for the Joint Estimation of States and Unknown Inputs for a Class of Nonlinear Fractional-Order Systems," Mathematics, MDPI, vol. 12(8), pages 1-12, April.
    14. Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    16. Mohamed Kharrat & Hassen Arfaoui, 2023. "A New Stabled Relaxation Method for Pricing European Options Under the Time-Fractional Vasicek Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1745-1763, April.
    17. Mo, Wenjun & Bao, Haibo, 2024. "Mean-square bounded synchronization of fractional-order chaotic Lur’e systems under deception attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    18. Ali, Hegagi Mohamed & Ameen, Ismail Gad & Gaber, Yasmeen Ahmed, 2024. "The effect of curative and preventive optimal control measures on a fractional order plant disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 496-515.
    19. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.