Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.109812
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
- Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
- Jajarmi, Amin & Arshad, Sadia & Baleanu, Dumitru, 2019. "A new fractional modelling and control strategy for the outbreak of dengue fever," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
- Abdon Atangana & Necdet Bildik, 2013. "Approximate Solution of Tuberculosis Disease Population Dynamics Model," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, June.
- Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
- Qureshi, Sania & Atangana, Abdon, 2019. "Mathematical analysis of dengue fever outbreak by novel fractional operators with field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
- Ullah, Saif & Altaf Khan, Muhammad & Farooq, Muhammad, 2018. "A fractional model for the dynamics of TB virus," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 63-71.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Heydari, M.H. & Razzaghi, M. & Avazzadeh, Z., 2021. "Orthonormal shifted discrete Chebyshev polynomials: Application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Yusuf, Abdullahi & Tasiu Mustapha, Umar & Abdulkadir Sulaiman, Tukur & Hincal, Evren & Bayram, Mustafa, 2021. "Modeling the effect of horizontal and vertical transmissions of HIV infection with Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Rahimkhani, Parisa & Heydari, Mohammad Hossein, 2023. "Fractional shifted Morgan–Voyce neural networks for solving fractal-fractional pantograph differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
- Xu, Changjin & Farman, Muhammad, 2023. "Qualitative and Ulam–Hyres stability analysis of fractional order cancer-immune model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Ogunmiloro, Oluwatayo Michael, 2021. "Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Algehyne, Ebrahem A. & Ibrahim, Muhammad, 2021. "Fractal-fractional order mathematical vaccine model of COVID-19 under non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Xuan, Liu & Ahmad, Shabir & Ullah, Aman & Saifullah, Sayed & Akgül, Ali & Qu, Haidong, 2022. "Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Shringi, Sakshi & Sharma, Harish & Rathie, Pushpa Narayan & Bansal, Jagdish Chand & Nagar, Atulya, 2021. "Modified SIRD Model for COVID-19 Spread Prediction for Northern and Southern States of India," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Babaei, A. & Jafari, H. & Banihashemi, S. & Ahmadi, M., 2021. "Mathematical analysis of a stochastic model for spread of Coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
- Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
- Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
- Berhe, Hailay Weldegiorgis & Qureshi, Sania & Shaikh, Asif Ali, 2020. "Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
- Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
- Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Qureshi, Sania & Aziz, Shaheen, 2020. "Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
- Djaoue, Seraphin & Guilsou Kolaye, Gabriel & Abboubakar, Hamadjam & Abba Ari, Ado Adamou & Damakoa, Irepran, 2020. "Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
- Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Fatmawati, & Khan, Muhammad Altaf & Azizah, Muftiyatul & Windarto, & Ullah, Saif, 2019. "A fractional model for the dynamics of competition between commercial and rural banks in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 32-46.
- Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
- Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
- Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
More about this item
Keywords
Existence; Special solutions; Caputo; Basic reproduction number; Numerical simulations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302058. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.