IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920306731.html
   My bibliography  Save this article

Finite-approximate controllability of semilinear fractional stochastic integro-differential equations

Author

Listed:
  • Mahmudov, N.I.

Abstract

We introduce the concepts of simultaneous finite dimensional exact and mean square approximate controllability (finite-approximate controllability) in the framework of semilinear fractional stochastic integro-differential evolution Ito equations. Under the approximate controllability of the corresponding linear part we obtain sufficient conditions for the finite-approximate controllability of the semilinear fractional stochastic integro-differential evolution equation. At the end, an example of stochastic heat equation is given to show applicability of our result.

Suggested Citation

  • Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306731
    DOI: 10.1016/j.chaos.2020.110277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Balasubramaniam & P. Tamilalagan, 2017. "The Solvability and Optimal Controls for Impulsive Fractional Stochastic Integro-Differential Equations via Resolvent Operators," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 139-155, July.
    2. Ge, Fu-Dong & Zhou, Hua-Cheng & Kou, Chun-Hai, 2016. "Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 107-120.
    3. Nazim I. Mahmudov, 2020. "Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 671-686, February.
    4. Liang, Jin & Yang, He, 2015. "Controllability of fractional integro-differential evolution equations with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 20-29.
    5. N. Sukavanam & Surendra Kumar, 2011. "Approximate Controllability of Fractional Order Semilinear Delay Systems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 373-384, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhayal, Rajesh & Malik, Muslim, 2021. "Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. ZOUARI, Farouk & IBEAS, Asier & BOULKROUNE, Abdesselem & CAO, Jinde & AREFI, Mohammad Mehdi, 2021. "Neural network controller design for fractional-order systems with input nonlinearities and asymmetric time-varying Pseudo-state constraints," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Nazim I. Mahmudov, 2023. "Mean Square Finite-Approximate Controllability of Semilinear Stochastic Differential Equations with Non-Lipschitz Coefficients," Mathematics, MDPI, vol. 11(3), pages 1-20, January.
    4. Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    5. Li, Xuemei & Liu, Xinge & Tang, Meilan, 2021. "Approximate controllability of fractional evolution inclusions with damping," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yueju & Sun, Jitao, 2017. "Controllability of measure driven evolution systems with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 119-126.
    2. Surendra Kumar & Shobha Yadav, 2021. "Infinite-delayed stochastic impulsive differential systems with Poisson jumps," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 344-362, June.
    3. Yong-Kui Chang & Yatian Pei & Rodrigo Ponce, 2019. "Existence and Optimal Controls for Fractional Stochastic Evolution Equations of Sobolev Type Via Fractional Resolvent Operators," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 558-572, August.
    4. Rodrigo Ponce, 2024. "Approximate Controllability of Abstract Discrete Fractional Systems of Order $$1," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 359-385, October.
    5. Gen Qi Xu, 2023. "Resolvent family for the evolution process with memory," Mathematische Nachrichten, Wiley Blackwell, vol. 296(6), pages 2626-2656, June.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Cai, Ruiyang & Ge, Fudong & Chen, YangQuan & Kou, Chunhai, 2019. "Regional observability for Hadamard-Caputo time fractional distributed parameter systems," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 190-202.
    8. Sumit Arora & Manil T. Mohan & Jaydev Dabas, 2023. "Finite-Approximate Controllability of Impulsive Fractional Functional Evolution Equations of Order $$1," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 855-890, June.
    9. Daewook Kim & Jin-Mun Jeong, 2021. "Controllability for Retarded Semilinear Neutral Control Systems of Fractional Order in Hilbert Spaces," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    10. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Controllability of Impulsive ψ -Caputo Fractional Evolution Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    11. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Ge, Fu-Dong & Zhou, Hua-Cheng & Kou, Chun-Hai, 2016. "Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 107-120.
    13. A. M. A. El-Sayed & Hoda A. Fouad, 2021. "On a Coupled System of Stochastic It o ^ -Differential and the Arbitrary (Fractional) Order Differential Equations with Nonlocal Random and Stochastic Integral Conditions," Mathematics, MDPI, vol. 9(20), pages 1-14, October.
    14. Zuomao Yan & Li Han, 2019. "Optimal Mild Solutions for a Class of Nonlocal Multi-Valued Stochastic Delay Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 1053-1075, June.
    15. Mahmudov, N.I., 2018. "Partial-approximate controllability of nonlocal fractional evolution equations via approximating method," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 227-238.
    16. Arthi, G. & Park, Ju H. & Suganya, K., 2019. "Controllability of fractional order damped dynamical systems with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 74-91.
    17. Arshi Meraj & Dwijendra N. Pandey, 2020. "Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 501-518, June.
    18. P. Balasubramaniam & P. Tamilalagan, 2017. "The Solvability and Optimal Controls for Impulsive Fractional Stochastic Integro-Differential Equations via Resolvent Operators," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 139-155, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.