IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i1d10.1007_s10957-024-02516-0.html
   My bibliography  Save this article

Approximate Controllability of Abstract Discrete Fractional Systems of Order $$1

Author

Listed:
  • Rodrigo Ponce

    (Universidad de Talca)

Abstract

We study the approximate controllability of the discrete fractional systems of order $$1 0$$ τ > 0 is a given step size. To do this, we first study resolvent sequences $$\{S_{\alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}$$ { S α , β n } n ∈ N 0 generated by closed linear operators to obtain some subordination results. In addition, we discuss the existence of solutions to $$(*)$$ ( ∗ ) and next, we study the existence of optimal controls to obtain the approximate controllability of the discrete fractional system $$(*)$$ ( ∗ ) in terms of the resolvent sequence $$\{S_{\alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}$$ { S α , β n } n ∈ N 0 for some $$\alpha ,\beta >0.$$ α , β > 0 . Finally, we provide an example to illustrate our results.

Suggested Citation

  • Rodrigo Ponce, 2024. "Approximate Controllability of Abstract Discrete Fractional Systems of Order $$1," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 359-385, October.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02516-0
    DOI: 10.1007/s10957-024-02516-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02516-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02516-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. I. Mahmudov, 2013. "Approximate Controllability of Fractional Sobolev-Type Evolution Equations in Banach Spaces," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, March.
    2. Sumit Arora & Manil T. Mohan & Jaydev Dabas, 2023. "Finite-Approximate Controllability of Impulsive Fractional Functional Evolution Equations of Order $$1," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 855-890, June.
    3. N. Sukavanam & Surendra Kumar, 2011. "Approximate Controllability of Fractional Order Semilinear Delay Systems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 373-384, November.
    4. Dorota Mozyrska & Ewa Pawłuszewicz & Małgorzata Wyrwas, 2017. "Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisation," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(4), pages 788-794, March.
    5. Yong-Kui Chang & Yatian Pei & Rodrigo Ponce, 2019. "Existence and Optimal Controls for Fractional Stochastic Evolution Equations of Sobolev Type Via Fractional Resolvent Operators," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 558-572, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazim I. Mahmudov, 2020. "Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 671-686, February.
    2. Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Gen Qi Xu, 2023. "Resolvent family for the evolution process with memory," Mathematische Nachrichten, Wiley Blackwell, vol. 296(6), pages 2626-2656, June.
    4. Yang, He & Zhao, Yanxia, 2021. "Existence and optimal controls of non-autonomous impulsive integro-differential evolution equation with nonlocal conditions," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Daewook Kim & Jin-Mun Jeong, 2021. "Controllability for Retarded Semilinear Neutral Control Systems of Fractional Order in Hilbert Spaces," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    6. Diblík, J. & Halfarová, H. & Šafařík, J., 2019. "Formulas for the general solution of weakly delayed planar linear discrete systems with constant coefficients and their analysis," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 363-381.
    7. Iqbal, Muhammad S. & Seadawy, Aly R. & Baber, Muhammad Z. & Qasim, Muhammad, 2022. "Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Yao-Qun Wu & Jia Wei He, 2022. "Existence and Optimal Controls for Hilfer Fractional Sobolev-Type Stochastic Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 79-101, October.
    9. Wang, Guotao & Qin, Jianfang & Zhang, Lihong & Baleanu, Dumitru, 2020. "Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    10. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Ge, Fu-Dong & Zhou, Hua-Cheng & Kou, Chun-Hai, 2016. "Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 107-120.
    12. Abdelhamid Bensalem & Abdelkrim Salim & Mouffak Benchohra & Michal Fečkan, 2023. "Approximate Controllability of Neutral Functional Integro-Differential Equations with State-Dependent Delay and Non-Instantaneous Impulses," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
    13. Arshi Meraj & Dwijendra N. Pandey, 2020. "Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 501-518, June.
    14. P. Balasubramaniam & P. Tamilalagan, 2017. "The Solvability and Optimal Controls for Impulsive Fractional Stochastic Integro-Differential Equations via Resolvent Operators," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 139-155, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02516-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.