IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v51y2020i2d10.1007_s13226-020-0413-9.html
   My bibliography  Save this article

Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions

Author

Listed:
  • Arshi Meraj

    (Indian Institute of Technology Roorkee)

  • Dwijendra N. Pandey

    (Indian Institute of Technology Roorkee)

Abstract

The aim of this article is to study approximate controllability of a class of non-autonomous Sobolev type integro-differential equations having non-instantaneous impulses with nonlocal initial condition. The results will be proved with the help of evolution system and Krasnoselskii fixed point theorem. An example is presented to show how our abstract results can be applied.

Suggested Citation

  • Arshi Meraj & Dwijendra N. Pandey, 2020. "Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 501-518, June.
  • Handle: RePEc:spr:indpam:v:51:y:2020:i:2:d:10.1007_s13226-020-0413-9
    DOI: 10.1007/s13226-020-0413-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-020-0413-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-020-0413-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Fu-Dong & Zhou, Hua-Cheng & Kou, Chun-Hai, 2016. "Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 107-120.
    2. N. I. Mahmudov, 2013. "Approximate Controllability of Fractional Sobolev-Type Evolution Equations in Banach Spaces," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazim I. Mahmudov, 2020. "Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 671-686, February.
    2. Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Rodrigo Ponce, 2024. "Approximate Controllability of Abstract Discrete Fractional Systems of Order $$1," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 359-385, October.
    4. Cai, Ruiyang & Ge, Fudong & Chen, YangQuan & Kou, Chunhai, 2019. "Regional observability for Hadamard-Caputo time fractional distributed parameter systems," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 190-202.
    5. Iqbal, Muhammad S. & Seadawy, Aly R. & Baber, Muhammad Z. & Qasim, Muhammad, 2022. "Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Mahmudov, N.I., 2018. "Partial-approximate controllability of nonlocal fractional evolution equations via approximating method," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 227-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:51:y:2020:i:2:d:10.1007_s13226-020-0413-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.