Finite-Approximate Controllability of Impulsive Fractional Functional Evolution Equations of Order $$1
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-023-02205-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nazim I. Mahmudov, 2020. "Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 671-686, February.
- Jia Wei He & Yong Liang & Bashir Ahmad & Yong Zhou, 2019. "Nonlocal Fractional Evolution Inclusions of Order α ∈ (1,2)," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
- Agata Grudzka & Krzysztof Rykaczewski, 2015. "On Approximate Controllability of Functional Impulsive Evolution Inclusions in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 414-439, August.
- Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R. & Zhou, Yong, 2020. "A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rodrigo Ponce, 2024. "Approximate Controllability of Abstract Discrete Fractional Systems of Order $$1," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 359-385, October.
- Abdelhamid Bensalem & Abdelkrim Salim & Mouffak Benchohra & Michal Fečkan, 2023. "Approximate Controllability of Neutral Functional Integro-Differential Equations with State-Dependent Delay and Non-Instantaneous Impulses," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Boudjerida, Assia & Seba, Djamila, 2021. "Approximate controllability of hybrid Hilfer fractional differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
- Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2021.
"A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1
," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1003-1026. - Afreen, A. & Raheem, A. & Khatoon, A., 2022. "Controllability of a second-order non-autonomous stochastic semilinear system with several delays in control," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Chen, Weihao & Liu, Yansheng & Zhao, Daliang, 2024. "Approximate controllability for a class of stochastic impulsive evolution system with infinite delay involving the fractional substantial derivative," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
More about this item
Keywords
Finite-approximate controllability; Cosine family; Non-instantaneous impulses; Caputo fractional derivative; Mainardi’s Wright-type function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:197:y:2023:i:3:d:10.1007_s10957-023-02205-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.