IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304331.html
   My bibliography  Save this article

Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness

Author

Listed:
  • Kavitha, K.
  • Vijayakumar, V.
  • Udhayakumar, R.

Abstract

This manuscript highlights the controllability of Hilfer fractional neutral differential systems with infinite delay. A vivid study on the primary outcomes is carried out by applying fractional calculus, and for the main results, we use fixed point technique to the measures of noncompactness. The results, thus acquired, are extend to the concept of nonlocal conditions. Lastly, a model is presented for the illustration of theory.

Suggested Citation

  • Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304331
    DOI: 10.1016/j.chaos.2020.110035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, JinRong & Zhang, Yuruo, 2015. "Nonlocal initial value problems for differential equations with Hilfer fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 850-859.
    2. Liang, Jin & Yang, He, 2015. "Controllability of fractional integro-differential evolution equations with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 20-29.
    3. Gu, Haibo & Trujillo, Juan J., 2015. "Existence of mild solution for evolution equation with Hilfer fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 344-354.
    4. N. I. Mahmudov, 2013. "Approximate Controllability of Fractional Sobolev-Type Evolution Equations in Banach Spaces," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, March.
    5. JinRong Wang & Zhenbin Fan & Yong Zhou, 2012. "Nonlocal Controllability of Semilinear Dynamic Systems with Fractional Derivative in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 292-302, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Yang Wang & Yongyang Liu & Yansheng Liu, 2022. "Total Controllability of Non-Autonomous Measure Evolution Systems with Non-Instantaneous Impulses and State-Dependent Delay," Mathematics, MDPI, vol. 10(15), pages 1-15, July.
    3. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    5. Thitiporn Linitda & Kulandhaivel Karthikeyan & Palanisamy Raja Sekar & Thanin Sitthiwirattham, 2023. "Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    6. Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Velmurugan Subramanian & Ghada AlNemer & Ahmed M. Elshenhab, 2022. "Existence of Hilfer Fractional Stochastic Differential Equations with Nonlocal Conditions and Delay via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    7. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Deep, Amar & Deepmala, & Hazarika, Bipan, 2021. "An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R. & Zhou, Yong, 2020. "A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Asmae Tajani & Fatima-Zahrae El Alaoui, 2023. "Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 767-780, August.
    12. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    14. Jaradat, Imad & Alquran, Marwan & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2022. "Analytic simulation of the synergy of spatial-temporal memory indices with proportional time delay," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Nisar, Kottakkaran Sooppy & Jothimani, K. & Kaliraj, K. & Ravichandran, C., 2021. "An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Muchenedi Hari Kishor & Sharifah E. Alhazmi & Shrideh Al-Omari, 2022. "A New Result Concerning Nonlocal Controllability of Hilfer Fractional Stochastic Differential Equations via almost Sectorial Operators," Mathematics, MDPI, vol. 11(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Surang Sitho & Sotiris K. Ntouyas & Ayub Samadi & Jessada Tariboon, 2021. "Boundary Value Problems for ψ -Hilfer Type Sequential Fractional Differential Equations and Inclusions with Integral Multi-Point Boundary Conditions," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    2. Debbouche, Amar & Antonov, Valery, 2017. "Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 140-148.
    3. Gou, Haide & Li, Baolin, 2018. "Study on the mild solution of Sobolev type Hilfer fractional evolution equations with boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 168-179.
    4. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    5. Nawapol Phuangthong & Sotiris K. Ntouyas & Jessada Tariboon & Kamsing Nonlaopon, 2021. "Nonlocal Sequential Boundary Value Problems for Hilfer Type Fractional Integro-Differential Equations and Inclusions," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    6. Ahmed, Hamdy M. & El-Borai, Mahmoud M., 2018. "Hilfer fractional stochastic integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 182-189.
    7. Athasit Wongcharoen & Sotiris K. Ntouyas & Jessada Tariboon, 2020. "Boundary Value Problems for Hilfer Fractional Differential Inclusions with Nonlocal Integral Boundary Conditions," Mathematics, MDPI, vol. 8(11), pages 1-11, October.
    8. Nisar, Kottakkaran Sooppy & Jothimani, K. & Kaliraj, K. & Ravichandran, C., 2021. "An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Guotao Wang & Jianfang Qin & Huanhe Dong & Tingting Guan, 2019. "Generalized Mittag–Leffler Stability of Hilfer Fractional Order Nonlinear Dynamic System," Mathematics, MDPI, vol. 7(6), pages 1-10, June.
    10. Cao, Yueju & Sun, Jitao, 2017. "Controllability of measure driven evolution systems with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 119-126.
    11. Nazim I. Mahmudov, 2020. "Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 671-686, February.
    12. Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Boudjerida, Assia & Seba, Djamila, 2021. "Approximate controllability of hybrid Hilfer fractional differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Dehestani, H. & Ordokhani, Y. & Razzaghi, M., 2018. "Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 433-453.
    15. Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Velmurugan Subramanian & Ghada AlNemer & Ahmed M. Elshenhab, 2022. "Existence of Hilfer Fractional Stochastic Differential Equations with Nonlocal Conditions and Delay via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    16. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. JinRong Wang & Michal Fec̆kan & Yong Zhou, 2013. "Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 13-32, January.
    18. Sousa, J. Vanterler da C. & Oliveira, D.S. & Capelas de Oliveira, E., 2021. "A note on the mild solutions of Hilfer impulsive fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    19. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Controllability of Impulsive ψ -Caputo Fractional Evolution Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    20. Abbas, Saïd & Benchohra, Mouffak & Lazreg, Jamal-Eddine & Zhou, Yong, 2017. "A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 47-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.