IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v148y2021ics0960077921004276.html
   My bibliography  Save this article

Approximate controllability of fractional evolution inclusions with damping

Author

Listed:
  • Li, Xuemei
  • Liu, Xinge
  • Tang, Meilan

Abstract

The approximate controllability of fractional evolution inclusions with damping is studied in this paper. Under a compactness assumption on the (α,μ)− regularized resolvent families of operators, some properties of operators associated with the regularized family are given. Next, the existence results of the system are obtained by nonlinear alternative of Leray-Schauder and Covitz and Nadler’s fixed point theorem. Furthermore, we obtain a new set of sufficient conditions for the approximate controllability of fractional evolution inclusions. Finally, examples are provided to illustrate the obtained results.

Suggested Citation

  • Li, Xuemei & Liu, Xinge & Tang, Meilan, 2021. "Approximate controllability of fractional evolution inclusions with damping," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921004276
    DOI: 10.1016/j.chaos.2021.111073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balachandran, K. & Govindaraj, V. & Rivero, M. & Trujillo, J.J., 2015. "Controllability of fractional damped dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 66-73.
    2. Fan, Zhenbin, 2014. "Characterization of compactness for resolvents and its applications," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 60-67.
    3. Haq, Abdul & Sukavanam, N., 2020. "Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Wang, JinRong & Fĕckan, Michal & Zhou, Yong, 2017. "Center stable manifold for planar fractional damped equations," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 257-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haq, Abdul & Sukavanam, N., 2022. "Existence and partial approximate controllability of nonlinear Riemann–Liouville fractional systems of higher order," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haq, Abdul & Sukavanam, N., 2020. "Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    3. Cao, Yueju & Sun, Jitao, 2017. "Controllability of measure driven evolution systems with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 119-126.
    4. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    5. Jia Wei He & Yong Liang & Bashir Ahmad & Yong Zhou, 2019. "Nonlocal Fractional Evolution Inclusions of Order α ∈ (1,2)," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    6. Tian, Xue & Zhang, Yi, 2021. "Fractional time-scales Noether theorem with Caputo Δ derivatives for Hamiltonian systems," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    7. Yong Zhou & Jia Wei He & Bashir Ahmad & Ahmed Alsaedi, 2018. "Existence and Attractivity for Fractional Evolution Equations," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-9, January.
    8. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Shouguo Zhu & Zhenbin Fan & Gang Li, 2017. "Optimal Controls for Riemann–Liouville Fractional Evolution Systems without Lipschitz Assumption," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 47-64, July.
    10. Arthi, G. & Suganya, K., 2021. "Controllability of higher order stochastic fractional control delay systems involving damping behavior," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    11. Zhang, Tao & Lu, Zhong-rong & Liu, Ji-ke & Chen, Yan-mao & Liu, Guang, 2023. "Parameter estimation of linear fractional-order system from laplace domain data," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    12. Saha, Kiran Kumar & Sukavanam, N., 2023. "Existence and uniqueness of blow-up solution to a fully fractional thermostat model," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Arthi, G. & Park, Ju H. & Suganya, K., 2019. "Controllability of fractional order damped dynamical systems with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 74-91.
    14. Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    15. Wang, JinRong & Fĕckan, Michal & Zhou, Yong, 2017. "Center stable manifold for planar fractional damped equations," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 257-269.
    16. Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Kumar, Vipin & Malik, Muslim & Debbouche, Amar, 2021. "Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    18. Haq, Abdul & Sukavanam, N., 2022. "Existence and partial approximate controllability of nonlinear Riemann–Liouville fractional systems of higher order," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    19. Wang, Zhi-Bo & Liu, Da-Yan & Boutat, Driss, 2022. "Algebraic estimation for fractional integrals of noisy acceleration based on the behaviour of fractional derivatives at zero," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    20. Dhayal, Rajesh & Malik, Muslim, 2021. "Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921004276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.