IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v165y2019icp74-91.html
   My bibliography  Save this article

Controllability of fractional order damped dynamical systems with distributed delays

Author

Listed:
  • Arthi, G.
  • Park, Ju H.
  • Suganya, K.

Abstract

This paper deals with the controllability criteria for fractional-order damped dynamical systems with distributed delays using Caputo derivatives for both linear and nonlinear cases. Controllability results are established by utilizing the Mittag-Leffler function (MLF) and Schauder’s fixed point theorem. Finally, two numerical examples are provided to show applicability of the proposed results.

Suggested Citation

  • Arthi, G. & Park, Ju H. & Suganya, K., 2019. "Controllability of fractional order damped dynamical systems with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 74-91.
  • Handle: RePEc:eee:matcom:v:165:y:2019:i:c:p:74-91
    DOI: 10.1016/j.matcom.2019.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419300813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balachandran, K. & Govindaraj, V. & Rivero, M. & Trujillo, J.J., 2015. "Controllability of fractional damped dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 66-73.
    2. G. Arthi & K. Balachandran, 2012. "Controllability of Damped Second-Order Impulsive Neutral Functional Differential Systems with Infinite Delay," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 799-813, March.
    3. Liang, Jin & Yang, He, 2015. "Controllability of fractional integro-differential evolution equations with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 20-29.
    4. Achar, B.N.Narahari & Hanneken, J.W. & Enck, T. & Clarke, T., 2001. "Dynamics of the fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 297(3), pages 361-367.
    5. Tofighi, Ali, 2003. "The intrinsic damping of the fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 29-34.
    6. Stanislavsky, Aleksander A., 2005. "Twist of fractional oscillations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 101-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Jiaquan & Zhao, Fuqiang & He, Dongping & Shi, Wei, 2022. "Bifurcation and resonance of fractional cubic nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Yaghoubi, Zahra, 2020. "Robust cluster consensus of general fractional-order nonlinear multi agent systems via adaptive sliding mode controller," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 15-32.
    3. Allan G. Soriano-Sánchez & Martín A. Rodríguez-Licea & Francisco J. Pérez-Pinal & José A. Vázquez-López, 2020. "Fractional-Order Approximation and Synthesis of a PID Controller for a Buck Converter," Energies, MDPI, vol. 13(3), pages 1-17, February.
    4. Mathiyalagan, Kalidass & Sangeetha, G., 2020. "Second-order sliding mode control for nonlinear fractional-order systems," Applied Mathematics and Computation, Elsevier, vol. 383(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drozdov, A.D., 2007. "Fractional oscillator driven by a Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 237-245.
    2. Balachandran, K. & Govindaraj, V. & Rivero, M. & Trujillo, J.J., 2015. "Controllability of fractional damped dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 66-73.
    3. Arthi, G. & Suganya, K., 2021. "Controllability of higher order stochastic fractional control delay systems involving damping behavior," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Cao, Yueju & Sun, Jitao, 2017. "Controllability of measure driven evolution systems with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 119-126.
    5. Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
    6. Hamdy M. Ahmed & Mahmoud M. El-Borai & Hassan M. El-Owaidy & Ahmed S. Ghanem, 2019. "Existence Solution and Controllability of Sobolev Type Delay Nonlinear Fractional Integro-Differential System," Mathematics, MDPI, vol. 7(1), pages 1-14, January.
    7. Wang, JinRong & Fĕckan, Michal & Zhou, Yong, 2017. "Center stable manifold for planar fractional damped equations," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 257-269.
    8. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    9. Mishra, Shalabh Kumar & Upadhyay, Dharmendra Kumar & Gupta, Maneesha, 2018. "An approach to improve the performance of fractional-order sinusoidal oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 126-135.
    10. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    11. Kumar, Vipin & Malik, Muslim & Debbouche, Amar, 2021. "Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    12. Jiang, Wei & Chen, Zhong & Hu, Ning & Song, Haiyang & Yang, Zhaohong, 2020. "Multi-scale orthogonal basis method for nonlinear fractional equations with fractional integral boundary value conditions," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    13. Elimhan N. Mahmudov, 2018. "Optimization of Mayer Problem with Sturm–Liouville-Type Differential Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 345-375, May.
    14. Li, Xuemei & Liu, Xinge & Tang, Meilan, 2021. "Approximate controllability of fractional evolution inclusions with damping," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    15. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    16. Tian, Yan & Zhong, Lin-Feng & He, Gui-Tian & Yu, Tao & Luo, Mao-Kang & Stanley, H. Eugene, 2018. "The resonant behavior in the oscillator with double fractional-order damping under the action of nonlinear multiplicative noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 845-856.
    17. Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Eduardo Hernández & Donal O’Regan & Krishnan Balachandran, 2013. "Comments on Some Recent Results on Controllability of Abstract Differential Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 292-295, October.
    19. Elimhan N. Mahmudov, 2022. "Optimization of Higher-Order Differential Inclusions with Special Boundary Value Conditions," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 36-55, January.
    20. Tian, Xue & Zhang, Yi, 2021. "Fractional time-scales Noether theorem with Caputo Δ derivatives for Hamiltonian systems," Applied Mathematics and Computation, Elsevier, vol. 393(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:165:y:2019:i:c:p:74-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.