IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v184y2020i2d10.1007_s10957-018-1255-z.html
   My bibliography  Save this article

Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems

Author

Listed:
  • Nazim I. Mahmudov

    (Eastern Mediterranean University, Gazimagusa, T.R. North Cyprus)

Abstract

In this work, we extend a variational approach to study the finite-approximate controllability for Sobolev-type fractional semilinear evolution equations with nonlocal conditions in Hilbert spaces. Assuming the approximate controllability of the corresponding linear equation, we obtain sufficient conditions for the finite-approximate controllability of the Sobolev-type fractional system. We prove that, with one sole control, one can obtain simultaneously approximate controllability and exact reachability of a finite number of constraints. The obtained result is a generalization and continuation of the recent results on this issue. An example is given as an application of our result.

Suggested Citation

  • Nazim I. Mahmudov, 2020. "Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 671-686, February.
  • Handle: RePEc:spr:joptap:v:184:y:2020:i:2:d:10.1007_s10957-018-1255-z
    DOI: 10.1007/s10957-018-1255-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1255-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1255-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Ganesh & R. Sakthivel & N. I. Mahmudov & S. M. Anthoni, 2013. "Approximate Controllability of Fractional Integrodifferential Evolution Equations," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-7, May.
    2. N. I. Mahmudov, 2013. "Approximate Controllability of Fractional Sobolev-Type Evolution Equations in Banach Spaces," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, March.
    3. Michal Fec̆kan & JinRong Wang & Yong Zhou, 2013. "Controllability of Fractional Functional Evolution Equations of Sobolev Type via Characteristic Solution Operators," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 79-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumit Arora & Manil T. Mohan & Jaydev Dabas, 2023. "Finite-Approximate Controllability of Impulsive Fractional Functional Evolution Equations of Order $$1," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 855-890, June.
    2. Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alka Chadha & Dwijendra N. Pandey, 2018. "Approximate Controllability of a Neutral Stochastic Fractional Integro-Differential Inclusion with Nonlocal Conditions," Journal of Theoretical Probability, Springer, vol. 31(2), pages 705-740, June.
    2. Rafał Kamocki & Marek Majewski, 2017. "On the Existence and Continuous Dependence on Parameter of Solutions to Some Fractional Dirichlet Problem with Application to Lagrange Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 32-46, July.
    3. Kumar, Vipin & Malik, Muslim & Debbouche, Amar, 2021. "Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    4. Revathi, P. & Sakthivel, R. & Ren, Yong, 2016. "Stochastic functional differential equations of Sobolev-type with infinite delay," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 68-77.
    5. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Iqbal, Muhammad S. & Seadawy, Aly R. & Baber, Muhammad Z. & Qasim, Muhammad, 2022. "Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Yao-Qun Wu & Jia Wei He, 2022. "Existence and Optimal Controls for Hilfer Fractional Sobolev-Type Stochastic Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 79-101, October.
    8. Sivajiganesan Sivasankar & Ramalingam Udhayakumar, 2022. "Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(12), pages 1-19, June.
    9. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Amar Debbouche & Juan J. Nieto & Delfim F. M. Torres, 2017. "Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type with Nonlocal Nonlinear Fractional Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 7-31, July.
    11. Arshi Meraj & Dwijendra N. Pandey, 2020. "Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 501-518, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:184:y:2020:i:2:d:10.1007_s10957-018-1255-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.