IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v144y2021ics0960077921000953.html
   My bibliography  Save this article

Neural network controller design for fractional-order systems with input nonlinearities and asymmetric time-varying Pseudo-state constraints

Author

Listed:
  • ZOUARI, Farouk
  • IBEAS, Asier
  • BOULKROUNE, Abdesselem
  • CAO, Jinde
  • AREFI, Mohammad Mehdi

Abstract

This article considers the neural adaptive control issues of a category of non-integer-order non-square plants with actuator Nonlinearities and Asymmetric Time-Varying pseudo-State Constraints. First, the original non-square non-affine system with input nonlinearities is transformed into an equivalent affine-in-control square model by defining a set of auxiliary variables and by employing the mean-value theorem. Second, Neural networks and Nussbaum functions are exploited to obviate the requirement of a complete knowledge of the system dynamics and the control directions, respectively. Third, a novel adaptive dynamic surface control method based on Caputo fractional derivative definitions and fractional order filters is developed to overcome the “explosion of complexity” problem in the traditional backstepping design process and to determine the parameter update laws and control signals, concurrently. Then, Asymmetric Barrier Lyapunov Functions with error variables are adopted to ensure the uniform stability of the closed-loop system and to prevent the violation of the full pseudo-State constraints. The novelties and contributions of this article are: (1) through the introduction of new technical Lemmas and corollaries, existing control design and stability theories linked to integer-order square systems are developed and extended to non-square non-integer-order ones. (2) all signals, including variables and errors in the closed-loop system are semi-global practical finite-time stability whereas the the tracking errors are asymptotically driven to zero without transgression of the constraints. Finally, the effectiveness and potential of the proposed control approach are substantiated by two example simulations.

Suggested Citation

  • ZOUARI, Farouk & IBEAS, Asier & BOULKROUNE, Abdesselem & CAO, Jinde & AREFI, Mohammad Mehdi, 2021. "Neural network controller design for fractional-order systems with input nonlinearities and asymmetric time-varying Pseudo-state constraints," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000953
    DOI: 10.1016/j.chaos.2021.110742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921000953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Defoort, Michael & Boulaaras, Salah, 2021. "Predefined-time convergence in fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Owolabi, Kolade M., 2017. "Mathematical modelling and analysis of two-component system with Caputo fractional derivative order," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 544-554.
    3. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
    4. Coronel-Escamilla, Antonio & Gomez-Aguilar, Jose Francisco & Stamova, Ivanka & Santamaria, Fidel, 2020. "Fractional order controllers increase the robustness of closed-loop deep brain stimulation systems," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guha, Dipayan, 2023. "Non-integer disturbance observer-aided resilient frequency controller applied to hybrid power system," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Stamov, Trayan, 2024. "Practical stability criteria for discrete fractional neural networks in product form design analysis," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Pishro, Aboozar & Shahrokhi, Mohammad & Sadeghi, Hamed, 2022. "Fault-tolerant adaptive fractional controller design for incommensurate fractional-order nonlinear dynamic systems subject to input and output restrictions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Pishro, Aboozar & Shahrokhi, Mohammad & Mohit, Mohammaderfan, 2023. "Adaptive neural quantized control for fractional-order full-state constrained non-strict feedback systems subject to input fault and nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Partohaghighi, Mohammad & Akgül, Ali, 2021. "Modelling and simulations of the SEIR and Blood Coagulation systems using Atangana-Baleanu-Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    3. Li, Xuemei & Liu, Xinge & Tang, Meilan, 2021. "Approximate controllability of fractional evolution inclusions with damping," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Yu, Hao & Wu, Boying & Zhang, Dazhi, 2018. "A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 96-111.
    5. Hanif, Hanifa, 2021. "Cattaneo–Friedrich and Crank–Nicolson analysis of upper-convected Maxwell fluid along a vertical plate," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.
    7. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Heydari, M.H. & Razzaghi, M., 2023. "Piecewise fractional Chebyshev cardinal functions: Application for time fractional Ginzburg–Landau equation with a non-smooth solution," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    10. Gómez-Aguilar, J.F., 2018. "Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 52-75.
    11. Liu, Xuan & Ullah, Saif & Alshehri, Ahmed & Altanji, Mohamed, 2021. "Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    12. Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    13. Owolabi, Kolade M. & Atangana, Abdon, 2018. "Chaotic behaviour in system of noninteger-order ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 362-370.
    14. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    15. Kamal Elyaalaoui & Moussa Labbadi & Sahbi Boubaker & Souad Kamel & Faisal S. Alsubaei, 2023. "On Novel Fractional-Order Trajectory Tracking Control of Quadrotors: A Predefined-Time Guarantee Performance Approach," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    16. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    17. Aljoudi, Shorog, 2021. "Exact solutions of the fractional Sharma-Tasso-Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    18. Dhayal, Rajesh & Malik, Muslim, 2021. "Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    19. Owolabi, Kolade M., 2019. "Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 89-101.
    20. Hashemi, M.S. & Inc, Mustafa & Yusuf, Abdullahi, 2020. "On three-dimensional variable order time fractional chaotic system with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.