IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p279-d1025961.html
   My bibliography  Save this article

Categorical Variable Mapping Considerations in Classification Problems: Protein Application

Author

Listed:
  • Gerardo Alfonso Perez

    (Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain)

  • Raquel Castillo

    (Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain)

Abstract

The mapping of categorical variables into numerical values is common in machine learning classification problems. This type of mapping is frequently performed in a relatively arbitrary manner. We present a series of four assumptions (tested numerically) regarding these mappings in the context of protein classification using amino acid information. This assumption involves the mapping of categorical variables into protein classification problems without the need to use approaches such as natural language process (NLP). The first three assumptions relate to equivalent mappings, and the fourth involves a comparable mapping using a proposed eigenvalue-based matrix representation of the amino acid chain. These assumptions were tested across a range of 23 different machine learning algorithms. It is shown that the numerical simulations are consistent with the presented assumptions, such as translation and permutations, and that the eigenvalue approach generates classifications that are statistically not different from the base case or that have higher mean values while at the same time providing some advantages such as having a fixed predetermined dimensions regardless of the size of the analyzed protein. This approach generated an accuracy of 83.25%. An optimization algorithm is also presented that selects an appropriate number of neurons in an artificial neural network applied to the above-mentioned protein classification problem, achieving an accuracy of 85.02%. The model includes a quadratic penalty function to decrease the chances of overfitting.

Suggested Citation

  • Gerardo Alfonso Perez & Raquel Castillo, 2023. "Categorical Variable Mapping Considerations in Classification Problems: Protein Application," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:279-:d:1025961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng, Yaohao & Nagata, Mateus Hiro, 2020. "An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Alexander Radovic & Mike Williams & David Rousseau & Michael Kagan & Daniele Bonacorsi & Alexander Himmel & Adam Aurisano & Kazuhiro Terao & Taritree Wongjirad, 2018. "Machine learning at the energy and intensity frontiers of particle physics," Nature, Nature, vol. 560(7716), pages 41-48, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    2. Alireza Tavakolian & Alireza Rezaee & Farshid Hajati & Shahadat Uddin, 2023. "Hospital Readmission and Length-of-Stay Prediction Using an Optimized Hybrid Deep Model," Future Internet, MDPI, vol. 15(9), pages 1-21, September.
    3. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    4. James Ming Chen & Mira Zovko & Nika Šimurina & Vatroslav Zovko, 2021. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM 2.5 Pollution," IJERPH, MDPI, vol. 18(16), pages 1-59, August.
    5. Wenhui Ke & Yimin Lu, 2024. "Ensemble Prediction Method Based on Decomposition–Reconstitution–Integration for COVID-19 Outbreak Prediction," Mathematics, MDPI, vol. 12(3), pages 1-20, February.
    6. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:279-:d:1025961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.