IDEAS home Printed from https://ideas.repec.org/p/dpr/wpaper/1194r.html
   My bibliography  Save this paper

Beware the performance of an algorithm before relying on it: Evidence from a stock price forecasting experiment

Author

Listed:
  • Tiffany Tsz Kwan TSE
  • Nobuyuki HANAKI
  • Bolin MAO

Abstract

We experimentally investigated the relationship between participants' reliance on algorithms, their familiarity with the task, and the performance level of the algorithm. We found that when participants could freely decide on their final forecast after observing the one produced by the algorithm (a condition found to mitigate algorithm aversion), the average degree of reliance on high and low performing algorithms did not significantly differ for participants with little experience in the task. Experienced participants relied less on the algorithm than inexperienced participants, regardless of its performance level. The reliance on the low performing algorithm was positive even when participants could infer that they outperformed the algorithm. Indeed, participants would have done better without relying on the low performing algorithm at all. Our results suggest that, at least in some domains, excessive reliance on algorithms, rather than algorithm aversion, should be a concern.

Suggested Citation

  • Tiffany Tsz Kwan TSE & Nobuyuki HANAKI & Bolin MAO, 2022. "Beware the performance of an algorithm before relying on it: Evidence from a stock price forecasting experiment," ISER Discussion Paper 1194r, Institute of Social and Economic Research, Osaka University, revised Mar 2024.
  • Handle: RePEc:dpr:wpaper:1194r
    as

    Download full text from publisher

    File URL: https://www.iser.osaka-u.ac.jp/library/dp/2022/DP1194R.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bao, Te & Corgnet, Brice & Hanaki, Nobuyuki & Riyanto, Yohanes E. & Zhu, Jiahua, 2023. "Predicting the unpredictable: New experimental evidence on forecasting random walks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    2. repec:dpr:wpaper:1156 is not listed on IDEAS
    3. Chiara Longoni & Andrea Bonezzi & Carey K Morewedge, 2019. "Resistance to Medical Artificial Intelligence," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(4), pages 629-650.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    5. Ben Greiner, 2015. "Subject pool recruitment procedures: organizing experiments with ORSEE," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 1(1), pages 114-125, July.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    7. Yaniv, Ilan & Kleinberger, Eli, 2000. "Advice Taking in Decision Making: Egocentric Discounting and Reputation Formation," Organizational Behavior and Human Decision Processes, Elsevier, vol. 83(2), pages 260-281, November.
    8. March, Christoph, 2021. "Strategic interactions between humans and artificial intelligence: Lessons from experiments with computer players," Journal of Economic Psychology, Elsevier, vol. 87(C).
    9. Schniter, E. & Shields, T.W. & Sznycer, D., 2020. "Trust in humans and robots: Economically similar but emotionally different," Journal of Economic Psychology, Elsevier, vol. 78(C).
    10. Andrew Prahl & Lyn Van Swol, 2017. "Understanding algorithm aversion: When is advice from automation discounted?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(6), pages 691-702, September.
    11. Alexia Gaudeul & Caterina Giannetti, 2021. "Fostering the adoption of robo-advisors: A 3-weeks online stock-trading experiment," Discussion Papers 2021/275, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    12. Berkeley J. Dietvorst & Joseph P. Simmons & Cade Massey, 2018. "Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them," Management Science, INFORMS, vol. 64(3), pages 1155-1170, March.
    13. Farjam, Mike, 2019. "On whom would I want to depend; humans or computers?," Journal of Economic Psychology, Elsevier, vol. 72(C), pages 219-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhao Fu & Nobuyuki Hanaki, 2024. "Do people rely on ChatGPT more than their peers to detect deepfake news?," ISER Discussion Paper 1233r, Institute of Social and Economic Research, Osaka University, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chugunova, Marina & Sele, Daniela, 2022. "We and It: An interdisciplinary review of the experimental evidence on how humans interact with machines," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 99(C).
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Mahmud, Hasan & Islam, A.K.M. Najmul & Ahmed, Syed Ishtiaque & Smolander, Kari, 2022. "What influences algorithmic decision-making? A systematic literature review on algorithm aversion," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Cao, Sean & Jiang, Wei & Wang, Junbo & Yang, Baozhong, 2024. "From Man vs. Machine to Man + Machine: The art and AI of stock analyses," Journal of Financial Economics, Elsevier, vol. 160(C).
    5. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    6. Merle, Aurélie & St-Onge, Anik & Sénécal, Sylvain, 2022. "Does it pay to be honest? The effect of retailer-provided negative feedback on consumers’ product choice and shopping experience," Journal of Business Research, Elsevier, vol. 147(C), pages 532-543.
    7. Benedikt Berger & Martin Adam & Alexander Rühr & Alexander Benlian, 2021. "Watch Me Improve—Algorithm Aversion and Demonstrating the Ability to Learn," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(1), pages 55-68, February.
    8. Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
    9. Brice Corgnet, 2023. "An Experimental Test of Algorithmic Dismissals," Working Papers 2302, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    10. Alexia GAUDEUL & Caterina GIANNETTI, 2023. "Trade-offs in the design of financial algorithms," Discussion Papers 2023/288, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    11. Greiner, Ben & Grünwald, Philipp & Lindner, Thomas & Lintner, Georg & Wiernsperger, Martin, 2024. "Incentives, Framing, and Reliance on Algorithmic Advice: An Experimental Study," Department for Strategy and Innovation Working Paper Series 01/2024, WU Vienna University of Economics and Business.
    12. Pascal Oliver Heßler & Jella Pfeiffer & Sebastian Hafenbrädl, 2022. "When Self-Humanization Leads to Algorithm Aversion," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(3), pages 275-292, June.
    13. Back, Camila & Morana, Stefan & Spann, Martin, 2023. "When do robo-advisors make us better investors? The impact of social design elements on investor behavior," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 103(C).
    14. Downen, Tom & Kim, Sarah & Lee, Lorraine, 2024. "Algorithm aversion, emotions, and investor reaction: Does disclosing the use of AI influence investment decisions?," International Journal of Accounting Information Systems, Elsevier, vol. 52(C).
    15. Michalski, Lachlan & Low, Rand Kwong Yew, 2024. "Determinants of corporate credit ratings: Does ESG matter?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    16. Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024. "Panel data nowcasting: The case of price–earnings ratios," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
    17. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    18. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    19. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    20. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).

    More about this item

    JEL classification:

    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • G1 - Financial Economics - - General Financial Markets
    • G4 - Financial Economics - - Behavioral Finance
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dpr:wpaper:1194r. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Librarian (email available below). General contact details of provider: https://edirc.repec.org/data/isosujp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.