IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303593.html
   My bibliography  Save this article

Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population

Author

Listed:
  • Ghanbari, Behzad
  • Djilali, Salih

Abstract

This manuscript aims to consider a variety of fractional predator-prey models in the presence of an infection developed in the predator population. The crowding behavior plays an essential role in some species surviving, which is a useful strategy for defending the inside group prey. The purpose of considering the fractional-order-derivative is to study the memory effects on the mutual interactions, which has been confirmed to be an intrinsic feature of a dynamic biological system. From the perspective of mathematical results, the local behavior of the equilibrium points, and the existence of Hopf bifurcation are obtained. Besides, the influence of some crucial parameters as memory rate, herd shape, the infection rate in determining the asymptotic behavior of prey and predator are investigated. Further, an efficient numerical technique has been employed to illustrate some illustrative representations for numerical approximation for the solutions. This iterative scheme has been designed using the fundamental theorem of calculus in the fractional sense, and linear polynomial interpolation.

Suggested Citation

  • Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303593
    DOI: 10.1016/j.chaos.2020.109960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Xiaosong & Song, Yongli, 2015. "Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator–prey model with herd behavior," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 375-391.
    2. Rihan, F.A. & Al-Mdallal, Q.M. & AlSakaji, H.J. & Hashish, A., 2019. "A fractional-order epidemic model with time-delay and nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 97-105.
    3. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    4. Bulai, Iulia Martina & Venturino, Ezio, 2017. "Shape effects on herd behavior in ecological interacting population models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 40-55.
    5. Dokuyucu, Mustafa Ali & Dutta, Hemen, 2020. "A fractional order model for Ebola Virus with the new Caputo fractional derivative without singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Gao, Wei & Ghanbari, Behzad & Baskonus, Haci Mehmet, 2019. "New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 34-43.
    7. Allahviranloo, Tofigh & Ghanbari, Behzad, 2020. "On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Huang, Chengdai & Li, Huan & Cao, Jinde, 2019. "A novel strategy of bifurcation control for a delayed fractional predator–prey model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 808-838.
    9. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.
    10. Xie, Yingkang & Lu, Junwei & Wang, Zhen, 2019. "Stability analysis of a fractional-order diffused prey–predator model with prey refuges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    11. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoaib, Muhammad & Abbasi, Aqsa Zafar & Raja, Muhammad Asif Zahoor & Nisar, Kottakkaran Sooppy, 2022. "A design of predictive computational network for the analysis of fractional epidemical predictor-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Zulqurnain Sabir & Juan L. G. Guirao, 2023. "A Soft Computing Scaled Conjugate Gradient Procedure for the Fractional Order Majnun and Layla Romantic Story," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    3. Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    4. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Arjun Hasibuan & Asep Kuswandi Supriatna & Endang Rusyaman & Md. Haider Ali Biswas, 2023. "Harvested Predator–Prey Models Considering Marine Reserve Areas: Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-23, August.
    6. Belmahi, Naziha & Shawagfeh, Nabil, 2021. "A new mathematical model for the glycolysis phenomenon involving Caputo fractional derivative: Well posedness, stability and bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Zulqurnain Sabir & Thongchai Botmart & Muhammad Asif Zahoor Raja & Wajaree Weera, 2022. "An advanced computing scheme for the numerical investigations of an infection-based fractional-order nonlinear prey-predator system," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Zafar, Zain Ul Abadin & Ali, Nigar & Baleanu, Dumitru, 2021. "Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Zafar, Zain Ul Abadin & Zaib, Sumera & Hussain, Muhammad Tanveer & Tunç, Cemil & Javeed, Shumaila, 2022. "Analysis and numerical simulation of tuberculosis model using different fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Zafar, Zain Ul Abadin & Younas, Samina & Hussain, Muhammad Tanveer & Tunç, Cemil, 2021. "Fractional aspects of coupled mass-spring system," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    7. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Cao, Jinde & Alsaedi, Ahmed, 2020. "Extended feedback and simulation strategies for a delayed fractional-order control system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Cecilia Berardo & Iulia Martina Bulai & Ezio Venturino, 2021. "Interactions Obtained from Basic Mechanistic Principles: Prey Herds and Predators," Mathematics, MDPI, vol. 9(20), pages 1-18, October.
    11. Ghanbari, Behzad & Cattani, Carlo, 2020. "On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    12. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Ezio Venturino, 2022. "Disease Spread among Hunted and Retaliating Herding Prey," Mathematics, MDPI, vol. 10(23), pages 1-21, November.
    14. Gupta, Ashvini & Dubey, Balram, 2022. "Bifurcation and chaos in a delayed eco-epidemic model induced by prey configuration," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    15. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    16. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Oxygen-plankton model under the effect of global warming with nonsingular fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    17. Sweilam, N.H. & AL-Mekhlafi, S.M. & Alshomrani, A.S. & Baleanu, D., 2020. "Comparative study for optimal control nonlinear variable-order fractional tumor model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    18. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    19. Allahviranloo, Tofigh & Ghanbari, Behzad, 2020. "On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    20. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.