IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920309231.html
   My bibliography  Save this article

Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis

Author

Listed:
  • Ghosh, Uttam
  • Pal, Swadesh
  • Banerjee, Malay

Abstract

This paper deals with a system of two fractional order differential equations for prey-predator interaction with intra-specific competition among predators. The fractional order differential equation is considered in the sense of Caputo derivative and the derivation of the fractional order model is explained in terms of memory effect on population growth. Detailed mathematical results are provided to establish the positiveness, existence–uniqueness and boundedness of the solutions. The conditions required for local asymptotic stability of various equilibrium points and global stability of coexistence equilibrium are derived along with the Hopf-bifurcation condition for coexistence equilibrium. The effect of memory on the system dynamics through the shift of Hopf-bifurcation threshold is demonstrated with the help of exhaustive numerical simulations. This study also reveals the effect of memory based growth on global bifurcation threshold.

Suggested Citation

  • Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309231
    DOI: 10.1016/j.chaos.2020.110531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadiseh Safdari & Milad Zare Kamali & Amirhossein Shirazi & Moein Khalighi & Gholamreza Jafari & Marcel Ausloos, 2016. "Fractional Dynamics of Network Growth Constrained by Aging Node Interactions," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-13, May.
    2. Huang, Chengdai & Li, Huan & Cao, Jinde, 2019. "A novel strategy of bifurcation control for a delayed fractional predator–prey model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 808-838.
    3. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    4. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Oxygen-plankton model under the effect of global warming with nonsingular fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Ji, Guilin & Ge, Qing & Xu, Jiabo, 2016. "Dynamic behaviors of a fractional order two-species cooperative systems with harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 51-55.
    6. Cheng, Xiujun & Duan, Jinqiao & Li, Dongfang, 2019. "A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 452-464.
    7. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.
    8. González-Olvera, Marcos A. & Tang, Yu, 2018. "Contraction analysis for fractional-order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 255-263.
    9. Sung Kyu Choi & Bowon Kang & Namjip Koo, 2014. "Stability for Caputo Fractional Differential Systems," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, January.
    10. Nosrati, Komeil & Shafiee, Masoud, 2017. "Dynamic analysis of fractional-order singular Holling type-II predator–prey system," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 159-179.
    11. Moustafa, Mahmoud & Mohd, Mohd Hafiz & Ismail, Ahmad Izani & Abdullah, Farah Aini, 2018. "Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balcı, Ercan, 2023. "Predation fear and its carry-over effect in a fractional order prey–predator model with prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Avcı, İbrahim & Hussain, Azhar & Kanwal, Tanzeela, 2023. "Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Shang, Zuchong & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2021. "Bifurcation analysis and global dynamics in a predator–prey system of Leslie type with an increasing functional response," Ecological Modelling, Elsevier, vol. 455(C).
    5. Gökçe, Aytül, 2022. "A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Yılmaz, Zeynep & Maden, Selahattin & Gökçe, Aytül, 2022. "Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 526-539.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    2. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Cao, Jinde & Alsaedi, Ahmed, 2020. "Extended feedback and simulation strategies for a delayed fractional-order control system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Moustafa, Mahmoud & Mohd, Mohd Hafiz & Ismail, Ahmad Izani & Abdullah, Farah Aini, 2018. "Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 1-13.
    5. Yousef, Fatma Bozkurt & Yousef, Ali & Maji, Chandan, 2021. "Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Shuai Li & Chengdai Huang & Xinyu Song, 2019. "Bifurcation Based-Delay Feedback Control Strategy for a Fractional-Order Two-Prey One-Predator System," Complexity, Hindawi, vol. 2019, pages 1-13, April.
    7. Agus Suryanto & Isnani Darti & Hasan S. Panigoro & Adem Kilicman, 2019. "A Fractional-Order Predator–Prey Model with Ratio-Dependent Functional Response and Linear Harvesting," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    8. Li, Ning & Yan, Mengting, 2022. "Bifurcation control of a delayed fractional-order prey-predator model with cannibalism and disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    9. Huang, Chengdai & Li, Huan & Cao, Jinde, 2019. "A novel strategy of bifurcation control for a delayed fractional predator–prey model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 808-838.
    10. Yuan, Jun & Zhao, Lingzhi & Huang, Chengdai & Xiao, Min, 2021. "Stability and bifurcation analysis of a fractional predator–prey model involving two nonidentical delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 562-580.
    11. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    14. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    15. Jianguang Zhu & Kai Li & Binbin Hao, 2019. "Image Restoration by Second-Order Total Generalized Variation and Wavelet Frame Regularization," Complexity, Hindawi, vol. 2019, pages 1-16, March.
    16. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    17. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    18. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    19. Zhao, Jingjun & Zhang, Yanming & Xu, Yang, 2020. "Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    20. Ma, Tingting & Meng, Xinzhu & Hayat, Tasawar & Hobiny, Aatef, 2021. "Stability analysis and optimal harvesting control of a cross-diffusion prey-predator system," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.