IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s096007792200964x.html
   My bibliography  Save this article

Bifurcation and chaos in a delayed eco-epidemic model induced by prey configuration

Author

Listed:
  • Gupta, Ashvini
  • Dubey, Balram

Abstract

The present study assumes that infectious disease among prey classifies them as susceptible (S) and infected (I) prey. When strong (susceptible) prey forms a herd to defend against the predator, it can reverse their role. This paper focuses on spotlighting the impact of disease, generalized herd shape, predator mortality due to prey group, the attack rate for healthy prey, and time delay. These factors crucially govern the system’s dynamics like Hopf-bifurcation, transcritical bifurcation, and chaos. The sketch of the maximum Lyapunov exponent confirms the chaotic nature. Extensive theoretical and numerical analysis reveals the existence and stability of steady-states in the presence or absence of delay. This study finds out that disease spread in prey can enhance the chances of predator survival. Furthermore, sensitivity analysis demonstrates the influence of some epidemic and ecological parameters on the reproduction numbers of the proposed eco-epidemic system.

Suggested Citation

  • Gupta, Ashvini & Dubey, Balram, 2022. "Bifurcation and chaos in a delayed eco-epidemic model induced by prey configuration," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s096007792200964x
    DOI: 10.1016/j.chaos.2022.112785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200964X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    2. Bulai, Iulia Martina & Venturino, Ezio, 2017. "Shape effects on herd behavior in ecological interacting population models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 40-55.
    3. Alzahrani, Abdullah K. & Alshomrani, Ali Saleh & Pal, Nikhil & Samanta, Sudip, 2018. "Study of an eco-epidemiological model with Z-type control," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 197-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Danyang & Liu, Hua & Zhang, Haotian & Wei, Yumei, 2023. "Influence of multiple delays mechanisms on predator–prey model with Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cecilia Berardo & Iulia Martina Bulai & Ezio Venturino, 2021. "Interactions Obtained from Basic Mechanistic Principles: Prey Herds and Predators," Mathematics, MDPI, vol. 9(20), pages 1-18, October.
    2. Ezio Venturino, 2022. "Disease Spread among Hunted and Retaliating Herding Prey," Mathematics, MDPI, vol. 10(23), pages 1-21, November.
    3. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Kumar, Sachin & Kharbanda, Harsha, 2019. "Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 19-28.
    5. Djilali, Salih & Ghanbari, Behzad & Bentout, Soufiane & Mezouaghi, Abdelheq, 2020. "Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    7. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Souna, Fethi & Lakmeche, Abdelkader & Djilali, Salih, 2020. "Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Lacitignola, Deborah & Diele, Fasma, 2021. "Using awareness to Z-control a SEIR model with overexposure: Insights on Covid-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Ghanbari, Behzad & Cattani, Carlo, 2020. "On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    11. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2020. "Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Fu, Shuaiming & Luo, Jianfeng & Zhao, Yi, 2022. "Stability and bifurcations analysis in an ecoepidemic system with prey group defense and two infectious routes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 665-690.
    13. Castillo-Alvino, Hamlet Humberto & Marvá, Marcos, 2022. "Group defense promotes coexistence in interference competition: The Holling type IV competitive response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 426-445.
    14. Djilali, Salih & Ghanbari, Behzad, 2020. "Coronavirus pandemic: A predictive analysis of the peak outbreak epidemic in South Africa, Turkey, and Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    15. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    16. Mandal, Dibyendu Sekhar & Chekroun, Abdennasser & Samanta, Sudip & Chattopadhyay, Joydev, 2021. "A mathematical study of a crop-pest–natural enemy model with Z-type control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 468-488.
    17. Jinbu Zhao & Yongyou Nie & Kui Liu & Jizhi Zhou, 2020. "Evolution of the Individual Attitude in the Risk Decision of Waste Incinerator Construction: Cellular Automaton Model," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    18. Senapati, Abhishek & Panday, Pijush & Samanta, Sudip & Chattopadhyay, Joydev, 2020. "Disease control through removal of population using Z-control approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    19. María Carmen Vera & Marcos Marvá & Víctor José García-Garrido & René Escalante, 2024. "The Beddington–DeAngelis Competitive Response: Intra-Species Interference Enhances Coexistence in Species Competition," Mathematics, MDPI, vol. 12(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s096007792200964x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.