IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v554y2020ics0378437120300030.html
   My bibliography  Save this article

Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model

Author

Listed:
  • Huang, Chengdai
  • Liu, Heng
  • Chen, Xiaoping
  • Zhang, Minsong
  • Ding, Ling
  • Cao, Jinde
  • Alsaedi, Ahmed

Abstract

This paper excogitates the major theme of bifurcation control for a delayed fractional-order predator–prey model in accordance with an enhancing feedback controller. Initially, the bifurcation points of developed model are incisively established via analytic extrapolation by viewing time delay as a bifurcation parameter. Then, a range of contrastive analyses on the repercussion of bifurcation control are numerically illustrated including enhancing feedback, dislocated feedback and eliminating feedback approaches. It views that the stability performance of the developed model can be exceptionally intensified by enhancing feedback measure. Numerical simulations are implemented to gauge the benefits of the devised methodology in the end.

Suggested Citation

  • Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
  • Handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120300030
    DOI: 10.1016/j.physa.2020.124136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120300030
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kwang Su & Kim, Sangil & Jung, Il Hyo, 2018. "Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 1-16.
    2. Cao, Yang, 2019. "Bifurcations in an Internet congestion control system with distributed delay," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 54-63.
    3. Owolabi, Kolade M., 2017. "Mathematical modelling and analysis of two-component system with Caputo fractional derivative order," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 544-554.
    4. Moustafa, Mahmoud & Mohd, Mohd Hafiz & Ismail, Ahmad Izani & Abdullah, Farah Aini, 2018. "Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 1-13.
    5. Si, Lingzhi & Xiao, Min & Wang, Zhengxin & Huang, Chengdai & Cheng, Zunsgui & Tao, Binbin & Xu, Fengyu, 2019. "Dynamic optimal control at Hopf bifurcation of a Newman–Watts model of small-world networks via a new PD1n scheme," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
    6. Yao, Xueqi & Zhong, Shouming & Hu, Taotao & Cheng, Hong & Zhang, Dian, 2019. "Uniformly stable and attractive of fractional-order memristor-based neural networks with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 392-403.
    7. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    8. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.
    9. Xie, Yingkang & Lu, Junwei & Wang, Zhen, 2019. "Stability analysis of a fractional-order diffused prey–predator model with prey refuges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    10. Cao, Jinde & Guerrini, Luca & Cheng, Zunshui, 2019. "Stability and Hopf bifurcation of controlled complex networks model with two delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 21-29.
    11. Li, Li & Wang, Zhen & Li, Yuxia & Shen, Hao & Lu, Junwei, 2018. "Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 152-169.
    12. Huang, Chengdai & Li, Huan & Cao, Jinde, 2019. "A novel strategy of bifurcation control for a delayed fractional predator–prey model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 808-838.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Cao, Jinde & Alsaedi, Ahmed, 2020. "Extended feedback and simulation strategies for a delayed fractional-order control system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    4. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Yuan, Jun & Zhao, Lingzhi & Huang, Chengdai & Xiao, Min, 2021. "Stability and bifurcation analysis of a fractional predator–prey model involving two nonidentical delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 562-580.
    6. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Huang, Chengdai & Li, Huan & Cao, Jinde, 2019. "A novel strategy of bifurcation control for a delayed fractional predator–prey model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 808-838.
    8. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. He, Haoming & Xiao, Min & Lu, Yunxiang & Wang, Zhen & Tao, Binbin, 2023. "Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Shuai Li & Chengdai Huang & Xinyu Song, 2019. "Bifurcation Based-Delay Feedback Control Strategy for a Fractional-Order Two-Prey One-Predator System," Complexity, Hindawi, vol. 2019, pages 1-13, April.
    11. Zhou, Weigang & Huang, Chengdai & Xiao, Min & Cao, Jinde, 2019. "Hybrid tactics for bifurcation control in a fractional-order delayed predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 183-191.
    12. Khan, Khalid Ali & Murthy, B.S.N. & Madhusudanan, V. & Srinivas, M.N. & Zeb, Anwar, 2024. "Hopf-bifurcation of a two delayed social networking game addiction model with graded infection rate," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    13. Zhang, Hongmei & Cao, Jinde & Xiong, Lianglin, 2019. "Novel synchronization conditions for time-varying delayed Lur’e system with parametric uncertainty," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 224-236.
    14. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    15. Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.
    16. Li, Ning & Yan, Mengting, 2022. "Bifurcation control of a delayed fractional-order prey-predator model with cannibalism and disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    17. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    18. Jianguang Zhu & Kai Li & Binbin Hao, 2019. "Image Restoration by Second-Order Total Generalized Variation and Wavelet Frame Regularization," Complexity, Hindawi, vol. 2019, pages 1-16, March.
    19. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    20. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120300030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.