IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v126y2019icp97-105.html
   My bibliography  Save this article

A fractional-order epidemic model with time-delay and nonlinear incidence rate

Author

Listed:
  • Rihan, F.A.
  • Al-Mdallal, Q.M.
  • AlSakaji, H.J.
  • Hashish, A.

Abstract

In this paper, we provide an epidemic SIR model with long-range temporal memory. The model is governed by delay differential equations with fractional-order. We assume that the susceptible is obeying the logistic form in which the incidence term is of saturated form with the susceptible. Several theoretical results related to the existence of steady states and the asymptotic stability of the steady states are discussed. We use a suitable Lyapunov functional to formulate a new set of sufficient conditions that guarantee the global stability of the steady states. The occurrence of Hopf bifurcation is captured when the time-delay τ passes through a critical value τ*. Theoretical results are validated numerically by solving the governing system, using the modified Adams-Bashforth-Moulton predictor-corrector scheme. Our findings show that the combination of fractional-order derivative and time-delay in the model improves the dynamics and increases complexity of the model. In some cases, the phase portrait gets stretched as the order of the derivative is reduced.

Suggested Citation

  • Rihan, F.A. & Al-Mdallal, Q.M. & AlSakaji, H.J. & Hashish, A., 2019. "A fractional-order epidemic model with time-delay and nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 97-105.
  • Handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:97-105
    DOI: 10.1016/j.chaos.2019.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919302048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdeljawad, Thabet & Al-Mdallal, Qasem M. & Jarad, Fahd, 2019. "Fractional logistic models in the frame of fractional operators generated by conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 94-101.
    2. Fathalla A. Rihan & Dumitru Baleanu & S. Lakshmanan & R. Rakkiyappan, 2014. "On Fractional SIRC Model with Salmonella Bacterial Infection," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-9, April.
    3. Qasem Al-Mdallal & Kashif Ali Abro & Ilyas Khan, 2018. "Analytical Solutions of Fractional Walter’s B Fluid with Applications," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    4. Al-Mdallal, Qasem M. & Abu Omer, Ahmed S., 2018. "Fractional-order Legendre-collocation method for solving fractional initial value problems," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 74-84.
    5. Jing Bai & Guoguang Wen & Ahmed Rahmani & Yongguang Yu, 2015. "Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(13), pages 2380-2392, October.
    6. Fathalla A. Rihan, 2013. "Numerical Modeling of Fractional-Order Biological Systems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, August.
    7. Fathalla A. Rihan & M. Naim Anwar, 2012. "Qualitative Analysis of Delayed SIR Epidemic Model with a Saturated Incidence Rate," International Journal of Differential Equations, Hindawi, vol. 2012, pages 1-13, December.
    8. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    9. Al-Mdallal, Qasem M., 2018. "On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 261-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    2. Postavaru, O. & Anton, S.R. & Toma, A., 2021. "COVID-19 pandemic and chaos theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 138-149.
    3. Lee, Chaeyoung & Li, Yibao & Kim, Junseok, 2020. "The susceptible-unidentified infected-confirmed (SUC) epidemic model for estimating unidentified infected population for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Das, Parthasakha & Das, Samhita & Upadhyay, Ranjit Kumar & Das, Pritha, 2020. "Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Asif, Muhammad & Ali Khan, Zar & Haider, Nadeem & Al-Mdallal, Qasem, 2020. "Numerical simulation for solution of SEIR models by meshless and finite difference methods," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Ardak Kashkynbayev & Fathalla A. Rihan, 2021. "Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay," Mathematics, MDPI, vol. 9(15), pages 1-16, August.
    7. Teresa Faria, 2021. "Permanence for Nonautonomous Differential Systems with Delays in the Linear and Nonlinear Terms," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
    8. Liu, Jie & Chen, Guici & Wen, Shiping & Zhu, Song, 2024. "Finite-time piecewise control for discrete-time stochastic nonlinear time-varying systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    9. Ahmad, Shabir & Ullah, Aman & Al-Mdallal, Qasem M. & Khan, Hasib & Shah, Kamal & Khan, Aziz, 2020. "Fractional order mathematical modeling of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Ruofeng Rao & Zhi Lin & Xiaoquan Ai & Jiarui Wu, 2022. "Synchronization of Epidemic Systems with Neumann Boundary Value under Delayed Impulse," Mathematics, MDPI, vol. 10(12), pages 1-10, June.
    11. Ihtisham Ul Haq & Numan Ullah & Nigar Ali & Kottakkaran Sooppy Nisar, 2022. "A New Mathematical Model of COVID-19 with Quarantine and Vaccination," Mathematics, MDPI, vol. 11(1), pages 1-21, December.
    12. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Tsvetkov, V.P. & Mikheev, S.A. & Tsvetkov, I.V. & Derbov, V.L. & Gusev, A.A. & Vinitsky, S.I., 2022. "Modeling the multifractal dynamics of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    14. Wang, Ning & Qi, Longxing & Cheng, Guangyi, 2022. "Dynamical analysis for the impact of asymptomatic infective and infection delay on disease transmission," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 525-556.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fall, Aliou Niang & Ndiaye, Seydou Nourou & Sene, Ndolane, 2019. "Black–Scholes option pricing equations described by the Caputo generalized fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 108-118.
    2. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Atangana, Abdon & Shafiq, Anum, 2019. "Differential and integral operators with constant fractional order and variable fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 226-243.
    4. Acay, Bahar & Bas, Erdal & Abdeljawad, Thabet, 2020. "Fractional economic models based on market equilibrium in the frame of different type kernels," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Al-Mdallal, Qasem M., 2018. "On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 261-267.
    6. Atangana, Abdon & Alqahtani, Rubayyi T., 2018. "New numerical method and application to Keller-Segel model with fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 14-21.
    7. Rihan, F.A. & Velmurugan, G., 2020. "Dynamics of fractional-order delay differential model for tumor-immune system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Khan, Aziz & Abdeljawad, Thabet & Gómez-Aguilar, J.F. & Khan, Hasib, 2020. "Dynamical study of fractional order mutualism parasitism food web module," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    9. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    11. Ardak Kashkynbayev & Fathalla A. Rihan, 2021. "Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay," Mathematics, MDPI, vol. 9(15), pages 1-16, August.
    12. Kumar, Sunil & Kumar, Ajay & Samet, Bessem & Gómez-Aguilar, J.F. & Osman, M.S., 2020. "A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Abdeljawad, Thabet, 2018. "Different type kernel h−fractional differences and their fractional h−sums," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 146-156.
    14. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    16. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    17. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    18. Guangming Shao & Biao Liu & Yueying Liu, 2018. "The Unique Existence of Weak Solution and the Optimal Control for Time-Fractional Third Grade Fluid System," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    19. Karaagac, Berat, 2019. "A study on fractional Klein Gordon equation with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 218-229.
    20. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:97-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.