IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v136y2020ics0960077920302083.html
   My bibliography  Save this article

Steel corrosion prediction based on support vector machines

Author

Listed:
  • Lv, Ya-jun
  • Wang, Jun-wei
  • Wang, Julian
  • Xiong, Cheng
  • Zou, Liang
  • Li, Ly
  • Li, Da-wang

Abstract

In this paper, the 3D coordinate data of the corrosion condition of rebar are obtained by a 3D scanning method. Seven numerical parameters, such as the roundness, the section roughness, the inscribed circle radius/circumscribed circle radius and the eccentricity, are obtained by the numerical calculation method. These seven parameters are used to characterize the cross-section morphology of rusted steel bars. The particle swarm optimization support vector machine (PSO-SVM) and the grid search support vector machine (GS-SVM) are used to calculate these seven cross-section digitization parameters to predict the sectional corrosion rate of steel. This work concluded that these two optimization support vector machine (SVM) methods can accurately predict the sectional corrosion rate of steel. Compared with the GS-SVM model, the PSO-SVM steel corrosion prediction model is more accurate.

Suggested Citation

  • Lv, Ya-jun & Wang, Jun-wei & Wang, Julian & Xiong, Cheng & Zou, Liang & Li, Ly & Li, Da-wang, 2020. "Steel corrosion prediction based on support vector machines," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302083
    DOI: 10.1016/j.chaos.2020.109807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marouani, H. & Fouad, Y., 2019. "Particle swarm optimization performance for fitting of Lévy noise data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 708-714.
    2. Stewart, Mark G. & Al-Harthy, Ali, 2008. "Pitting corrosion and structural reliability of corroding RC structures: Experimental data and probabilistic analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 373-382.
    3. Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoyi Cui & Xiuli Geng, 2021. "Product Service System Configuration Based on a PCA-QPSO-SVM Model," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    2. Yang, Jianfeng & Suo, Guanyu & Chen, Liangchao & Dou, Zhan & Hu, Yuanhao, 2023. "Prediction method of key corrosion state parameters in refining process based on multi-source data," Energy, Elsevier, vol. 263(PA).
    3. Cheng, Min-Yuan & Cao, Minh-Tu & Herianto, Jason Ghorman, 2020. "Symbiotic organisms search-optimized deep learning technique for mapping construction cash flow considering complexity of project," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    2. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
    4. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    5. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry," Energy, Elsevier, vol. 162(C), pages 593-602.
    6. Suo, Qinghui & Stewart, Mark G., 2009. "Corrosion cracking prediction updating of deteriorating RC structures using inspection information," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1340-1348.
    7. Li, Bo & Liao, Mengjie & Yuan, Junjing & Zhang, Jian, 2023. "Green consumption behavior prediction based on fan-shaped search mechanism fruit fly algorithm optimized neural network," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    8. Jiang, Hongyan & Cheng, Feng & Wu, Cong & Fang, Dianjun & Zeng, Yuhai, 2024. "A multi-period-sequential-index combination method for short-term prediction of small sample data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Yang Zhang & Zhenghui Fu & Yulei Xie & Qing Hu & Zheng Li & Huaicheng Guo, 2020. "A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    10. Ghosh, Jayadipta & Sood, Piyush, 2016. "Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 197-218.
    11. Jinning Wang & Fangxing Li & Hantao Cui & Qingxin Shi & Trey Mingee, 2022. "Electricity consumption variation versus economic structure during COVID-19 on metropolitan statistical areas in the US," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Singh, Priyanka & Dwivedi, Pragya & Kant, Vibhor, 2019. "A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting," Energy, Elsevier, vol. 174(C), pages 460-477.
    13. Yunsun Kim & Sahm Kim, 2021. "Electricity Load and Internet Traffic Forecasting Using Vector Autoregressive Models," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    14. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    15. Heung-gu Son & Yunsun Kim & Sahm Kim, 2020. "Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid," Energies, MDPI, vol. 13(9), pages 1-14, May.
    16. Wang, Lin & Lv, Sheng-Xiang & Zeng, Yu-Rong, 2018. "Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China," Energy, Elsevier, vol. 155(C), pages 1013-1031.
    17. Xiwen Cui & Shaojun E & Dongxiao Niu & Dongyu Wang & Mingyu Li, 2021. "An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    18. Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Shah, Ibrar Ali & Khan, Farrukh Aslam & Derhab, Abdelouahid, 2021. "A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid," Applied Energy, Elsevier, vol. 299(C).
    19. Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
    20. Li, Yanying & Che, Jinxing & Yang, Youlong, 2018. "Subsampled support vector regression ensemble for short term electric load forecasting," Energy, Elsevier, vol. 164(C), pages 160-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.