IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v118y2019icp166-180.html
   My bibliography  Save this article

A novel hyperchaotic three-component oscillator operating at high frequency

Author

Listed:
  • Tchitnga, R.
  • Mezatio, B.A.
  • Fozin, T. Fonzin
  • Kengne, R.
  • Louodop Fotso, P.H.
  • Fomethe, A.

Abstract

This paper is investigating the hyperchaotic dynamics of a novel hyperchaotic oscillator (made of only three electronics components namely a transformer, a capacitor and a junction field effect transistor (JFET)) obtained by modifying the simple chaotic circuit proposed by Tchitnga et al. (doi:10.1016/j.chaos.2011.12.017) and published within this journal. The various laboratory tests on the novel three components oscillator help to confirm that it operates at high frequencies. Henceforth, justified the choice of Giacolleto model of JFET. Hyperchaos is analysed using well known nonlinear dynamic tools including bifurcation diagrams, Lyapunov exponent spectrum, phase portraits and Poincaré sections. Likewise, the high frequency is confirmed through the frequency spectrum simulated with PSpice. The systems also present the striking phenomena of hysteretic dynamics (bistability) and transient chaos as well as bursting oscillations over a wide range of its control parameter region. The measurements from experimental investigations are in accordance with the obtained numerical results.

Suggested Citation

  • Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
  • Handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:166-180
    DOI: 10.1016/j.chaos.2018.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918303047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haixia & Wang, Qingyun & Lu, Qishao, 2011. "Bursting oscillations, bifurcation and synchronization in neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 667-675.
    2. Bao, B.C. & Bao, H. & Wang, N. & Chen, M. & Xu, Q., 2017. "Hidden extreme multistability in memristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 102-111.
    3. Chen, Aimin & Lu, Junan & Lü, Jinhu & Yu, Simin, 2006. "Generating hyperchaotic Lü attractor via state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 103-110.
    4. Kingni, S.T. & Nana, B. & Mbouna Ngueuteu, G.S. & Woafo, P. & Danckaert, J., 2015. "Bursting oscillations in a 3D system with asymmetrically distributed equilibria: Mechanism, electronic implementation and fractional derivation effect," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 29-40.
    5. Freire, Joana G. & Gallas, Jason A.C., 2014. "Cyclic organization of stable periodic and chaotic pulsations in Hartley’s oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 129-134.
    6. Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Kengne, Jacques & Jafari, Sajad & Pham, Viet-Thanh, 2018. "A new four-dimensional system containing chaotic or hyper-chaotic attractors with no equilibrium, a line of equilibria and unstable equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 108-118.
    7. Kengne, Romanic & Tchitnga, Robert & Mabekou, Sandrine & Tekam, Blaise Raoul Wafo & Soh, Guy Blondeau & Fomethe, Anaclet, 2018. "On the relay coupling of three fractional-order oscillators with time-delay consideration: Global and cluster synchronizations," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 6-17.
    8. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    9. Chlouverakis, Konstantinos E. & Sprott, J.C., 2006. "Chaotic hyperjerk systems," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 739-746.
    10. Bocheng Bao & Aihuang Hu & Han Bao & Quan Xu & Mo Chen & Huagan Wu, 2018. "Three-Dimensional Memristive Hindmarsh–Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors," Complexity, Hindawi, vol. 2018, pages 1-11, February.
    11. Bao, B.C. & Wu, P.Y. & Bao, H. & Wu, H.G. & Zhang, X. & Chen, M., 2018. "Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 146-153.
    12. Romanic Kengne & Robert Tchitnga & Anicet Mezatio & Anaclet Fomethe & Grzegorz Litak, 2017. "Finite-time synchronization of fractional-order simplest two-component chaotic oscillators," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(5), pages 1-10, May.
    13. Tchitnga, Robert & Fotsin, Hilaire Bertrand & Nana, Bonaventure & Louodop Fotso, Patrick Hervé & Woafo, Paul, 2012. "Hartley’s oscillator: The simplest chaotic two-component circuit," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 306-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    2. Zhang, Yuan & Cao, Jinde & Liu, Lixia & Liu, Haihong & Li, Zhouhong, 2024. "Complex role of time delay in dynamical coordination of neural progenitor fate decisions mediated by Notch pathway," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Wafo Tekam, Raoul Blaise & Kengne, Jacques & Djuidje Kenmoe, Germaine, 2019. "High frequency Colpitts’ oscillator: A simple configuration for chaos generation," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 351-360.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    2. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    6. Zhang, Yunzhen & Liu, Zhong & Wu, Huagan & Chen, Shengyao & Bao, Bocheng, 2019. "Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 354-363.
    7. Lin, Yi & Liu, Wenbo & Hang, Cheng, 2023. "Revelation and experimental verification of quasi-periodic bursting, periodic bursting, periodic oscillation in third-order non-autonomous memristive FitzHugh-Nagumo neuron circuit," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Wafo Tekam, Raoul Blaise & Kengne, Jacques & Djuidje Kenmoe, Germaine, 2019. "High frequency Colpitts’ oscillator: A simple configuration for chaos generation," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 351-360.
    9. Ahmad Taher Azar & Ngo Mouelas Adele & Kammogne Soup Tewa Alain & Romanic Kengne & Fotsin Hilaire Bertrand, 2018. "Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-12, January.
    10. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Xu, Lu & Chu, Yan-Dong & Yang, Qiong, 2020. "Novel dynamical Scenario of the two-stage Colpitts oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Li, Chunbiao & Sprott, Julien Clinton & Zhang, Xin & Chai, Lin & Liu, Zuohua, 2022. "Constructing conditional symmetry in symmetric chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Yunzhen Zhang & Zhong Liu & Mo Chen & Huagan Wu & Shengyao Chen & Bocheng Bao, 2019. "Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    14. Akgül, Akif & Rajagopal, Karthikeyan & Durdu, Ali & Pala, Muhammed Ali & Boyraz, Ömer Faruk & Yildiz, Mustafa Zahid, 2021. "A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
    16. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    17. Huagan Wu & Han Bao & Quan Xu & Mo Chen, 2019. "Abundant Coexisting Multiple Attractors’ Behaviors in Three-Dimensional Sine Chaotic System," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    18. Zhou, Chengyi & Xie, Fei & Li, Zhijun, 2020. "Complex bursting patterns and fast-slow analysis in a smallest chemical reaction system with two slow parametric excitations," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    19. Zhang, Shaohua & Zhang, Hongli & Wang, Cong & Ma, Ping, 2020. "Bursting oscillations and bifurcation mechanism in a permanent magnet synchronous motor system with external load perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    20. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:166-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.