IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v106y2018icp118-130.html
   My bibliography  Save this article

A new finding on pattern self-organization along the route to chaos

Author

Listed:
  • Zhang, Huayong
  • Ma, Shengnan
  • Huang, Tousheng
  • Cong, Xuebing
  • Yang, Hongju
  • Zhang, Feifan

Abstract

This research investigates pattern self-organization along the route to chaos in a space- and time-discrete predator–prey system, where the prey shows convection movement in space. Through analysis on Turing instability of the system, pattern self-organization conditions are determined. Based on the conditions, simulations are performed under two initial conditions, demonstrating two pattern transitions along the route to chaos. In the first pattern transition, the patterns start from regular stripes, experiencing twisted stripes, then return to regular stripes again. The second pattern transition is much more complex and shows three stages. Especially, an alternation between ordered patterns and disordered chaos is found, contributing greatly to the spatiotemporal complexity of the system. When the system stays at the homogeneous chaotic states, Turing instability driven by convection and diffusion can still force the self-organization of regular striped patterns. The finding in this research provides a new comprehending for pattern self-organization and transition in spatially extended predator–prey systems.

Suggested Citation

  • Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
  • Handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:118-130
    DOI: 10.1016/j.chaos.2017.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791730471X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abid, Walid & Yafia, Radouane & Aziz-Alaoui, M.A. & Bouhafa, Habib & Abichou, Azgal, 2015. "Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 292-313.
    2. Wang, Caiyun, 2015. "Rich dynamics of a predator–prey model with spatial motion," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 1-9.
    3. Yongli Cai & Caidi Zhao & Weiming Wang, 2013. "Spatiotemporal Complexity of a Leslie-Gower Predator-Prey Model with the Weak Allee Effect," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-16, December.
    4. Schreiber, Sebastian J. & Killingback, Timothy P., 2013. "Spatial heterogeneity promotes coexistence of rock–paper–scissors metacommunities," Theoretical Population Biology, Elsevier, vol. 86(C), pages 1-11.
    5. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    6. Chang, Lili & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen, 2015. "Rich dynamics in a spatial predator–prey model with delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 540-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tousheng Huang & Huayong Zhang & Xuebing Cong & Ge Pan & Xiumin Zhang & Zhao Liu, 2019. "Exploring Spatiotemporal Complexity of a Predator-Prey System with Migration and Diffusion by a Three-Chain Coupled Map Lattice," Complexity, Hindawi, vol. 2019, pages 1-19, May.
    2. Zhang, Huayong & Guo, Fenglu & Zou, Hengchao & Zhao, Lei & Wang, Zhongyu & Yuan, Xiaotong & Liu, Zhao, 2024. "Refuge-driven spatiotemporal chaos in a discrete predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    2. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    3. Gökçe, Aytül, 2021. "A mathematical study for chaotic dynamics of dissolved oxygen- phytoplankton interactions under environmental driving factors and time lag," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Wu, Zeyan & Li, Jianjuan & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2019. "A spatial predator–prey system with non-renewable resources," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 381-391.
    5. Xu, Li & Liu, Jiayi & Zhang, Guang, 2018. "Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 226-231.
    6. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Chang, Lili & Jin, Zhen, 2018. "Efficient numerical methods for spatially extended population and epidemic models with time delay," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 138-154.
    8. Tousheng Huang & Huayong Zhang & Xuebing Cong & Ge Pan & Xiumin Zhang & Zhao Liu, 2019. "Exploring Spatiotemporal Complexity of a Predator-Prey System with Migration and Diffusion by a Three-Chain Coupled Map Lattice," Complexity, Hindawi, vol. 2019, pages 1-19, May.
    9. Abernethy, Gavin M. & McCartney, Mark & Glass, David H., 2019. "The role of migration in a spatial extension of the Webworld eco-evolutionary model," Ecological Modelling, Elsevier, vol. 397(C), pages 122-140.
    10. Matvey Kulakov & Efim Frisman, 2023. "Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    11. Zhang, Limin & Wang, Tao, 2023. "Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Jialin Chen & Xiaqing He & Fengde Chen, 2021. "The Influence of Fear Effect to a Discrete-Time Predator-Prey System with Predator Has Other Food Resource," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    13. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    14. Lu, Guangqing & Smidtaite, Rasa & Howard, Daniel & Ragulskis, Minvydas, 2019. "An image hiding scheme in a 2-dimensional coupled map lattice of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 78-85.
    15. Han, Xiaoling & Lei, Ceyu, 2023. "Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with Smith growth function," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Verdière, Nathalie & Manceau, David & Zhu, Shousheng & Denis-Vidal, Lilianne, 2020. "Inverse problem for a coupling model of reaction-diffusion and ordinary differential equations systems. Application to an epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    17. Moussaoui, Ali, 2015. "A reaction-diffusion equations modelling the effect of fluctuating water levels on prey-predator interactions," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1110-1121.
    18. Simas, Fabiano C. & Nobrega, K.Z. & Bazeia, D., 2022. "Bifurcation and chaos in one dimensional chains of small particles," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Anita Triska & Agus Yodi Gunawan & Nuning Nuraini, 2023. "The Effects of the Susceptible and Infected Cross-Diffusion Terms on Pattern Formations in an SI Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    20. Zhang, Guang & Zhang, Ruixuan & Yan, Yubin, 2020. "The diffusion-driven instability and complexity for a single-handed discrete Fisher equation," Applied Mathematics and Computation, Elsevier, vol. 371(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:118-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.