IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v260y2015icp292-313.html
   My bibliography  Save this article

Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain

Author

Listed:
  • Abid, Walid
  • Yafia, Radouane
  • Aziz-Alaoui, M.A.
  • Bouhafa, Habib
  • Abichou, Azgal

Abstract

In this paper, we investigate theoretically and numerically a 2-D spatio-temporal dynamics of a predator-prey mathematical model which incorporates the Holling type II and a modified Leslie–Gower functional response and logistic growth of the prey. This system is modeled by a reaction diffusion equations defined on a disc domain {(x,y)∈R2/x2+y2

Suggested Citation

  • Abid, Walid & Yafia, Radouane & Aziz-Alaoui, M.A. & Bouhafa, Habib & Abichou, Azgal, 2015. "Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 292-313.
  • Handle: RePEc:eee:apmaco:v:260:y:2015:i:c:p:292-313
    DOI: 10.1016/j.amc.2015.03.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315003847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.03.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verdière, Nathalie & Manceau, David & Zhu, Shousheng & Denis-Vidal, Lilianne, 2020. "Inverse problem for a coupling model of reaction-diffusion and ordinary differential equations systems. Application to an epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    2. Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
    3. Anita Triska & Agus Yodi Gunawan & Nuning Nuraini, 2023. "The Effects of the Susceptible and Infected Cross-Diffusion Terms on Pattern Formations in an SI Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    4. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    5. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    6. Kumari, Sarita & Tiwari, Satish Kumar & Upadhyay, Ranjit Kumar, 2022. "Cross diffusion induced spatiotemporal pattern in diffusive nutrient–plankton model with nutrient recycling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 246-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:260:y:2015:i:c:p:292-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.