IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/535746.html
   My bibliography  Save this article

Spatiotemporal Complexity of a Leslie-Gower Predator-Prey Model with the Weak Allee Effect

Author

Listed:
  • Yongli Cai
  • Caidi Zhao
  • Weiming Wang

Abstract

We investigate a diffusive Leslie-Gower predator-prey model with the additive Allee effect on prey subject to the zero-flux boundary conditions. Some results of solutions to this model and its corresponding steady-state problem are shown. More precisely, we give the stability of the positive constant steady-state solution, the refined a priori estimates of positive solution, and the nonexistence and existence of the positive nonconstant solutions. We carry out the analytical study for two-dimensional system in detail and find out the certain conditions for Turing instability. Furthermore, we perform numerical simulations and show that the model exhibits a transition from stripe-spot mixtures growth to isolated spots and also to stripes. These results show that the impact of the Allee effect essentially increases the model spatiotemporal complexity.

Suggested Citation

  • Yongli Cai & Caidi Zhao & Weiming Wang, 2013. "Spatiotemporal Complexity of a Leslie-Gower Predator-Prey Model with the Weak Allee Effect," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-16, December.
  • Handle: RePEc:hin:jnljam:535746
    DOI: 10.1155/2013/535746
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2013/535746.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2013/535746.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/535746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    2. Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
    3. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:535746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.