IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v375y2020ics0096300320300369.html
   My bibliography  Save this article

Inverse problem for a coupling model of reaction-diffusion and ordinary differential equations systems. Application to an epidemiological model

Author

Listed:
  • Verdière, Nathalie
  • Manceau, David
  • Zhu, Shousheng
  • Denis-Vidal, Lilianne

Abstract

This paper investigates an identifiability method for a class of systems of reaction diffusion equations in the L2 framework. This class is composed of a master system of ordinary differential equations coupled with a slave system of diffusion equations. It can model two populations, the second one being diffusive contrary to the first one. The identifiability method is based on an elimination procedure providing relations called input-output polynomials and linking the unknown parameters, the inputs and the outputs of the model. These polynomials can also be used to estimate the parameters as shown in this article. To our best knowledge, such an identifiability method and a parameter estimation procedure have not yet been explored for such a system in the L2 framework. This work is applied on an epidemiological model describing the propagation of the chikungunya in a local population.

Suggested Citation

  • Verdière, Nathalie & Manceau, David & Zhu, Shousheng & Denis-Vidal, Lilianne, 2020. "Inverse problem for a coupling model of reaction-diffusion and ordinary differential equations systems. Application to an epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300369
    DOI: 10.1016/j.amc.2020.125067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320300369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abid, Walid & Yafia, Radouane & Aziz-Alaoui, M.A. & Bouhafa, Habib & Abichou, Azgal, 2015. "Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 292-313.
    2. Denis-Vidal, Lilianne & Joly-Blanchard, Ghislaine & Noiret, Céline, 2001. "Some effective approaches to check the identifiability of uncontrolled nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(1), pages 35-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soradi-Zeid, Samaneh & Mesrizadeh, Mehdi, 2023. "On the convergence of finite integration method for system of ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    2. Anita Triska & Agus Yodi Gunawan & Nuning Nuraini, 2023. "The Effects of the Susceptible and Infected Cross-Diffusion Terms on Pattern Formations in an SI Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    3. Kumari, Sarita & Tiwari, Satish Kumar & Upadhyay, Ranjit Kumar, 2022. "Cross diffusion induced spatiotemporal pattern in diffusive nutrient–plankton model with nutrient recycling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 246-272.
    4. Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
    5. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    6. Alejandro F. Villaverde, 2019. "Observability and Structural Identifiability of Nonlinear Biological Systems," Complexity, Hindawi, vol. 2019, pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.