IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3148323.html
   My bibliography  Save this article

Exploring Spatiotemporal Complexity of a Predator-Prey System with Migration and Diffusion by a Three-Chain Coupled Map Lattice

Author

Listed:
  • Tousheng Huang
  • Huayong Zhang
  • Xuebing Cong
  • Ge Pan
  • Xiumin Zhang
  • Zhao Liu

Abstract

The topic of utilizing coupled map lattice to investigate complex spatiotemporal dynamics has attracted a lot of interest. For exploring the spatiotemporal complexity of a predator-prey system with migration and diffusion, a new three-chain coupled map lattice model is developed in this research. Based on Turing instability analysis, pattern formation conditions for the predator-prey system are derived. Via numerical simulation, rich Turing patterns are found with subtle self-organized structures under diffusion-driven and migration-driven mechanisms. With the variation of migration rates, the predator-prey system exhibits a gradual dynamical transition from diffusion-driven patterns to migration-driven patterns. Moreover, new results, the self-organization of non-Turing patterns, are also revealed. We find that even in the cases where the nonspatial predator-prey system reaches collapse, the migration can still drive pattern self-organization. These non-Turing patterns suggest many new possible ways for the coexistence of predator and prey in space, under the effects of migration and diffusion.

Suggested Citation

  • Tousheng Huang & Huayong Zhang & Xuebing Cong & Ge Pan & Xiumin Zhang & Zhao Liu, 2019. "Exploring Spatiotemporal Complexity of a Predator-Prey System with Migration and Diffusion by a Three-Chain Coupled Map Lattice," Complexity, Hindawi, vol. 2019, pages 1-19, May.
  • Handle: RePEc:hin:complx:3148323
    DOI: 10.1155/2019/3148323
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3148323.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3148323.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3148323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
    2. Sun, Gui-Quan & Jin, Zhen & Liu, Quan-Xing & Li, Li, 2008. "Dynamical complexity of a spatial predator–prey model with migration," Ecological Modelling, Elsevier, vol. 219(1), pages 248-255.
    3. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fasma Diele & Carmela Marangi, 2019. "Geometric Numerical Integration in Ecological Modelling," Mathematics, MDPI, vol. 8(1), pages 1-30, December.
    2. McAllister, A. & McCartney, M. & Glass, D.H., 2024. "Correlation between Hurst exponent and largest Lyapunov exponent on a coupled map lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    3. Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialin Chen & Xiaqing He & Fengde Chen, 2021. "The Influence of Fear Effect to a Discrete-Time Predator-Prey System with Predator Has Other Food Resource," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    2. Xu, Li & Liu, Jiayi & Zhang, Guang, 2018. "Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 226-231.
    3. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Lu, Guangqing & Smidtaite, Rasa & Howard, Daniel & Ragulskis, Minvydas, 2019. "An image hiding scheme in a 2-dimensional coupled map lattice of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 78-85.
    5. Han, Xiaoling & Lei, Ceyu, 2023. "Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with Smith growth function," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Xiongxiong Du & Xiaoling Han & Ceyu Lei, 2022. "Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
    7. Zhang, Huayong & Guo, Fenglu & Zou, Hengchao & Zhao, Lei & Wang, Zhongyu & Yuan, Xiaotong & Liu, Zhao, 2024. "Refuge-driven spatiotemporal chaos in a discrete predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Zeyan Wu & Wenxiong Lin & Bailian Li & Linkun Wu & Changxun Fang & Zhixing Zhang, 2015. "Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
    9. Xibo Wang & Jianping Ge & Wendong Wei & Hanshi Li & Chen Wu & Ge Zhu, 2016. "Spatial Dynamics of the Communities and the Role of Major Countries in the International Rare Earths Trade: A Complex Network Analysis," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-22, May.
    10. Wang, Caiyun, 2015. "Rich dynamics of a predator–prey model with spatial motion," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 1-9.
    11. Marick, Sounov & Bhattacharya, Santanu & Bairagi, Nandadulal, 2023. "Dynamic properties of a reaction–diffusion predator–prey model with nonlinear harvesting: A linear and weakly nonlinear analysis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Simas, Fabiano C. & Nobrega, K.Z. & Bazeia, D., 2022. "Bifurcation and chaos in one dimensional chains of small particles," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    13. Fasani, Stefano & Rinaldi, Sergio, 2011. "Factors promoting or inhibiting Turing instability in spatially extended prey–predator systems," Ecological Modelling, Elsevier, vol. 222(18), pages 3449-3452.
    14. Chang, Lili & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen, 2015. "Rich dynamics in a spatial predator–prey model with delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 540-550.
    15. Zhang, Guang & Zhang, Ruixuan & Yan, Yubin, 2020. "The diffusion-driven instability and complexity for a single-handed discrete Fisher equation," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    16. Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
    17. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    18. Abernethy, Gavin M. & McCartney, Mark & Glass, David H., 2019. "The role of migration in a spatial extension of the Webworld eco-evolutionary model," Ecological Modelling, Elsevier, vol. 397(C), pages 122-140.
    19. Wang, Caiyun & Qi, Suying, 2018. "Spatial dynamics of a predator-prey system with cross diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 55-60.
    20. Dhar, Joydip & Singh, Harkaran & Bhatti, Harbax Singh, 2015. "Discrete-time dynamics of a system with crowding effect and predator partially dependent on prey," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 324-335.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3148323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.