IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v397y2019icp122-140.html
   My bibliography  Save this article

The role of migration in a spatial extension of the Webworld eco-evolutionary model

Author

Listed:
  • Abernethy, Gavin M.
  • McCartney, Mark
  • Glass, David H.

Abstract

We extend an eco-evolutionary food web model to a spatially-explicit metacommunity model which features migration of populations between multiple local sites on the same time-scale as feeding and reproduction. We study how factors including the implementation and rate of dispersal, properties of the local environments, and the spatial topology of the metacommunity interact to determine the local and global diversity and the degree of synchronisation between local food webs. We investigate the influence of migration on the stability of local networks to perturbation, and simulate a 5 × 5 spatial arrangement of cells, demonstrating that combining adaptive migration and heterogeneous habitats allows distinct food webs to coevolve from the beginning of the simulation. When coupling food webs by diffusion migration after an initial period of isolation, the Webworld model can construct metacommunities of distinct food webs if the local sites have spatially-homogeneous environmental parameters. If the sites have heterogeneous parameters, synchronisation between food webs increases greatly, but this can be offset by a greater number of sites and less-connected spatial topologies.

Suggested Citation

  • Abernethy, Gavin M. & McCartney, Mark & Glass, David H., 2019. "The role of migration in a spatial extension of the Webworld eco-evolutionary model," Ecological Modelling, Elsevier, vol. 397(C), pages 122-140.
  • Handle: RePEc:eee:ecomod:v:397:y:2019:i:c:p:122-140
    DOI: 10.1016/j.ecolmodel.2018.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018304149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abernethy, Gavin M., 2020. "Allometry in an eco-evolutionary network model," Ecological Modelling, Elsevier, vol. 427(C).
    2. Menezes, Jorge Fernando Saraiva & Oliveira-Santos, Luiz Gustavo Rodrigues, 2021. "Cautious individuals have non-invadable territories, according to an evolutionary mechanistic model," Ecological Modelling, Elsevier, vol. 449(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialin Chen & Xiaqing He & Fengde Chen, 2021. "The Influence of Fear Effect to a Discrete-Time Predator-Prey System with Predator Has Other Food Resource," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    2. Xu, Li & Liu, Jiayi & Zhang, Guang, 2018. "Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 226-231.
    3. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Lu, Guangqing & Smidtaite, Rasa & Howard, Daniel & Ragulskis, Minvydas, 2019. "An image hiding scheme in a 2-dimensional coupled map lattice of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 78-85.
    5. Han, Xiaoling & Lei, Ceyu, 2023. "Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with Smith growth function," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Tousheng Huang & Huayong Zhang & Xuebing Cong & Ge Pan & Xiumin Zhang & Zhao Liu, 2019. "Exploring Spatiotemporal Complexity of a Predator-Prey System with Migration and Diffusion by a Three-Chain Coupled Map Lattice," Complexity, Hindawi, vol. 2019, pages 1-19, May.
    7. Simas, Fabiano C. & Nobrega, K.Z. & Bazeia, D., 2022. "Bifurcation and chaos in one dimensional chains of small particles," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Zhang, Guang & Zhang, Ruixuan & Yan, Yubin, 2020. "The diffusion-driven instability and complexity for a single-handed discrete Fisher equation," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    9. Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
    10. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    11. Matvey Kulakov & Efim Frisman, 2023. "Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    12. Zhang, Limin & Wang, Tao, 2023. "Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:397:y:2019:i:c:p:122-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.