IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v316y2018icp138-154.html
   My bibliography  Save this article

Efficient numerical methods for spatially extended population and epidemic models with time delay

Author

Listed:
  • Chang, Lili
  • Jin, Zhen

Abstract

Reaction–diffusion models with time delay have been widely applied in population biology as well as epidemiology. This type of models can possibly exhibit complex dynamical behaviors such as traveling wave, self-organized spatial pattern, or chaos. Numerical methods play an essential role in the study of these dynamical behaviors. This paper concerns the finite element approximation for reaction–diffusion models with time delay. Two fully discrete schemes and corresponding a priori error estimates are derived. Generally, the research on evolution of population and epidemic needs to survey long-time dynamical behaviors of these models, so that it is important to improve the speed of numerical simulation. To this end, interpolation technique is used in our schemes to avoid numerical integration of reaction term. An outstanding advantage of using interpolation of reaction term is that it improves the operation speed greatly, meanwhile does not reduce convergence order. Applications are given to some model problems arising from population biology and epidemiology. From these simulations some interesting phenomena can be found and we try to explain them in biological significance.

Suggested Citation

  • Chang, Lili & Jin, Zhen, 2018. "Efficient numerical methods for spatially extended population and epidemic models with time delay," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 138-154.
  • Handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:138-154
    DOI: 10.1016/j.amc.2017.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317305799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, Malay & Zhang, Lai, 2014. "Influence of discrete delay on pattern formation in a ratio-dependent prey–predator model," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 73-81.
    2. Fabio Milner & Ruijun Zhao, 2008. "S-I-R Model with Directed Spatial Diffusion," Mathematical Population Studies, Taylor & Francis Journals, vol. 15(3), pages 160-181.
    3. Chang, Lili & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen, 2015. "Rich dynamics in a spatial predator–prey model with delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 540-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barman, Madhab & Mishra, Nachiketa, 2024. "Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Zhang, Wenbo & Gu, Wei, 2024. "Machine learning for a class of partial differential equations with multi-delays based on numerical Gaussian processes," Applied Mathematics and Computation, Elsevier, vol. 467(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    2. Victoria Chebotaeva & Paula A. Vasquez, 2023. "Erlang-Distributed SEIR Epidemic Models with Cross-Diffusion," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    3. Gökçe, Aytül, 2021. "A mathematical study for chaotic dynamics of dissolved oxygen- phytoplankton interactions under environmental driving factors and time lag," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Mi-Young Kim & Tsendayush Selenge, 2016. "Discontinuous-continuous Galerkin methods for population diffusion with finite life span," Mathematical Population Studies, Taylor & Francis Journals, vol. 23(1), pages 17-36, January.
    5. Moussaoui, Ali, 2015. "A reaction-diffusion equations modelling the effect of fluctuating water levels on prey-predator interactions," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1110-1121.
    6. d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Tian, Canrong & Ling, Zhi & Zhang, Lai, 2017. "Nonlocal interaction driven pattern formation in a prey–predator model," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 73-83.
    8. Lazebnik, Teddy, 2023. "Computational applications of extended SIR models: A review focused on airborne pandemics," Ecological Modelling, Elsevier, vol. 483(C).
    9. Norberto Aníbal Maidana & Hyun Mo Yang, 2013. "How Do Bird Migrations Propagate the West Nile virus," Mathematical Population Studies, Taylor & Francis Journals, vol. 20(4), pages 192-207, October.
    10. Wu, Zeyan & Li, Jianjuan & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2019. "A spatial predator–prey system with non-renewable resources," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 381-391.
    11. Chang, Lili & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen, 2015. "Rich dynamics in a spatial predator–prey model with delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 540-550.
    12. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    13. Zhao, Dawei & Wang, Lianhai & Xu, Lijuan & Wang, Zhen, 2015. "Finding another yourself in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 599-604.
    14. Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
    15. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    16. Rauf Ahmed Shams Malick & Syed Kashir Hasan & Fahad Samad & Nadeem Kafi Khan & Hassan Jamil Syed, 2023. "Smart Methods to Deal with COVID-19 at University-Level Institutions Using Social Network Analysis Techniques," Sustainability, MDPI, vol. 15(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:138-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.