IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp802-808.html
   My bibliography  Save this article

Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis

Author

Listed:
  • Zuliani, Nicola
  • Taccani, Rodolfo

Abstract

In this paper, a performance analysis on the basis of a simulation model and experimental data of a 1kW High Temperature PEM (HTPEM) cogeneration system is presented. The system is composed of a steam reforming unit that can be operated with natural gas. The balance of plant is modeled using a commercial industrial process simulation software, Aspen Plus®. Components such as burner and chemical reactors are simulated using existing modules available in the software library. The fuel cell performance is predicted by means of a zero dimensional semi-empirical model implemented in Fortran and then integrated in the Aspen Plus process simulation. The fuel cell model is validated using experimental data available in the literature and from tests carried out by the authors. The aim of the work is to perform an energy analysis that allows investigating system partial load operations and to assess the difference with Low Temperature PEM (LTPEM) fuel cell based systems. Results show that HTPEM systems could achieve electrical efficiencies similar to LTPEM systems but with a simpler balance of plant.

Suggested Citation

  • Zuliani, Nicola & Taccani, Rodolfo, 2012. "Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis," Applied Energy, Elsevier, vol. 97(C), pages 802-808.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:802-808
    DOI: 10.1016/j.apenergy.2011.12.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    2. Barelli, L. & Bidini, G. & Gallorini, F. & Ottaviano, A., 2011. "An energetic–exergetic analysis of a residential CHP system based on PEM fuel cell," Applied Energy, Elsevier, vol. 88(12), pages 4334-4342.
    3. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    4. Barelli, L. & Bidini, G. & Gallorini, F. & Ottaviano, A., 2012. "Dynamic analysis of PEMFC-based CHP systems for domestic application," Applied Energy, Elsevier, vol. 91(1), pages 13-28.
    5. Hong, Wen-Tang & Yen, Tzu-Hsiang & Chung, Tsang-Dong & Huang, Cheng-Nan & Chen, Bao-Dong, 2011. "Efficiency analyses of ethanol-fueled solid oxide fuel cell power system," Applied Energy, Elsevier, vol. 88(11), pages 3990-3998.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaggi, Vikas & Jayanti, S., 2013. "A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer," Applied Energy, Elsevier, vol. 110(C), pages 295-303.
    2. Lu, Chia-Lien & Chang, Cheng-Ping & Guo, Yi-Hsuan & Yeh, Tsung-Kuang & Su, Yu-Chuan & Wang, Pen-Cheng & Hsueh, Kan-Lin & Tseng, Fan-Gang, 2019. "High-performance and low-leakage phosphoric acid fuel cell with synergic composite membrane stacking of micro glass microfiber and nano PTFE," Renewable Energy, Elsevier, vol. 134(C), pages 982-988.
    3. Li, Yan & Shi, Yan & Mehio, Nada & Tan, Mingsheng & Wang, Zhiyong & Hu, Xiaohong & Chen, George Z. & Dai, Sheng & Jin, Xianbo, 2016. "More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid," Applied Energy, Elsevier, vol. 175(C), pages 451-458.
    4. Najafi, Behzad & Haghighat Mamaghani, Alireza & Rinaldi, Fabio & Casalegno, Andrea, 2015. "Long-term performance analysis of an HT-PEM fuel cell based micro-CHP system: Operational strategies," Applied Energy, Elsevier, vol. 147(C), pages 582-592.
    5. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    6. Thomas, Sobi & Vang, Jakob Rabjerg & Araya, Samuel Simon & Kær, Søren Knudsen, 2017. "Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions," Applied Energy, Elsevier, vol. 192(C), pages 422-436.
    7. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
    8. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    9. Di Marcoberardino, G. & Chiarabaglio, L. & Manzolini, G. & Campanari, S., 2019. "A Techno-economic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications," Applied Energy, Elsevier, vol. 239(C), pages 692-705.
    10. Jannelli, Elio & Minutillo, Mariagiovanna & Perna, Alessandra, 2013. "Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances," Applied Energy, Elsevier, vol. 108(C), pages 82-91.
    11. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Kashiwaya, Yoshiaki, 2014. "Operational analysis of a small-capacity cogeneration system with a gas hydrate battery," Energy, Elsevier, vol. 74(C), pages 810-828.
    12. Thomas, Sobi & Bates, Alex & Park, Sam & Sahu, A.K. & Lee, Sang C. & Son, Byung Rak & Kim, Joo Gon & Lee, Dong-Ha, 2016. "An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 765-776.
    13. Haghighat Mamaghani, Alireza & Najafi, Behzad & Casalegno, Andrea & Rinaldi, Fabio, 2017. "Predictive modelling and adaptive long-term performance optimization of an HT-PEM fuel cell based micro combined heat and power (CHP) plant," Applied Energy, Elsevier, vol. 192(C), pages 519-529.
    14. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    15. Jeon, Seung Won & Cha, Dowon & Kim, Hyung Soon & Kim, Yongchan, 2016. "Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions," Applied Energy, Elsevier, vol. 166(C), pages 165-173.
    16. Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
    2. Han, Hun Sik & Cho, Changhwan & Kim, Seo Young & Hyun, Jae Min, 2013. "Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer," Applied Energy, Elsevier, vol. 105(C), pages 125-137.
    3. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    4. Teresa J. Leo & Miguel A. Raso & Emilio Navarro & Eleuterio Mora, 2013. "Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends," Energies, MDPI, vol. 6(1), pages 1-12, January.
    5. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
    6. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    7. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    8. Chen, Wen-Lih & Huang, Chao-Wei & Li, Yueh-Heng & Kao, Chien-Chun & Cong, Huynh Thanh, 2020. "Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and stirling engine," Energy, Elsevier, vol. 194(C).
    9. Oh, Si-Doek & Kim, Ki-Young & Oh, Shuk-Bum & Kwak, Ho-Young, 2012. "Optimal operation of a 1-kW PEMFC-based CHP system for residential applications," Applied Energy, Elsevier, vol. 95(C), pages 93-101.
    10. Jeon, Seung Won & Cha, Dowon & Kim, Hyung Soon & Kim, Yongchan, 2016. "Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions," Applied Energy, Elsevier, vol. 166(C), pages 165-173.
    11. Bizon, N., 2011. "Nonlinear control of fuel cell hybrid power sources: Part II - Current control," Applied Energy, Elsevier, vol. 88(7), pages 2574-2591, July.
    12. Sankar, K. & Thakre, Niraj & Singh, Sumit Mohan & Jana, Amiya K., 2017. "Sliding mode observer based nonlinear control of a PEMFC integrated with a methanol reformer," Energy, Elsevier, vol. 139(C), pages 1126-1143.
    13. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    14. Viorel Ionescu & Adriana Elena Balan & Alexandra Maria Isabel Trefilov & Ioan Stamatin, 2021. "Exergetic Performance of a PEM Fuel Cell with Laser-Induced Graphene as the Microporous Layer," Energies, MDPI, vol. 14(19), pages 1-18, September.
    15. Kong, Im Mo & Jung, Aeri & Kim, Min Soo, 2016. "Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 176(C), pages 149-156.
    16. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
    17. Barbieri, Enrico Saverio & Spina, Pier Ruggero & Venturini, Mauro, 2012. "Analysis of innovative micro-CHP systems to meet household energy demands," Applied Energy, Elsevier, vol. 97(C), pages 723-733.
    18. Lin, Chien-Hung, 2013. "Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 898-904.
    19. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    20. Authayanun, Suthida & Mamlouk, Mohamed & Scott, Keith & Arpornwichanop, Amornchai, 2013. "Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications," Applied Energy, Elsevier, vol. 109(C), pages 192-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:802-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.