IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v109y2013icp192-201.html
   My bibliography  Save this article

Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications

Author

Listed:
  • Authayanun, Suthida
  • Mamlouk, Mohamed
  • Scott, Keith
  • Arpornwichanop, Amornchai

Abstract

A high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has a major advantage over a low-temperature polymer electrolyte fuel cell (LT-PEMFC) demonstrated by a tolerance to a higher CO content in the hydrogen feed and thus a simpler fuel processing. In this study, a direct comparison between the performance of HT-PEMFC and LT-PEMFC systems integrated with a glycerol steam reformer with and without a water gas shift reactor is shown. Under pure hydrogen operation, the LT-PEMFC performance is superior to the HT-PEMFC. However, the HT-PEMFC system shows good performance over the LT-PEMFC system when operated under high current density and high pressure (3atm) and using the reformate gas derived from the glycerol processor as fuel. At high current density, the high concentration of CO is the major limitation for the operation of HT-PEMFC system without water gas shift reactor, whereas the LT-PEMFC suffers from CO poisoning and restricted oxygen mass transport. Considering the system efficiency with co-heat and power generation, the HT-PEMFC system with water gas shift reactor shows the highest overall system efficiency (approximately 60%) and therefore one of the most suitable technologies for stationary applications.

Suggested Citation

  • Authayanun, Suthida & Mamlouk, Mohamed & Scott, Keith & Arpornwichanop, Amornchai, 2013. "Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications," Applied Energy, Elsevier, vol. 109(C), pages 192-201.
  • Handle: RePEc:eee:appene:v:109:y:2013:i:c:p:192-201
    DOI: 10.1016/j.apenergy.2013.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Haisheng & Ding, Yulong & Cong, Ngoc T. & Dou, Binlin & Dupont, Valerie & Ghadiri, Mojtaba & Williams, Paul T., 2011. "A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental," Renewable Energy, Elsevier, vol. 36(2), pages 779-788.
    2. Arsalis, Alexandros & Nielsen, Mads P. & Kær, Søren K., 2011. "Modeling and off-design performance of a 1kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family house," Energy, Elsevier, vol. 36(2), pages 993-1002.
    3. Barelli, L. & Bidini, G. & Gallorini, F. & Ottaviano, A., 2011. "An energetic–exergetic analysis of a residential CHP system based on PEM fuel cell," Applied Energy, Elsevier, vol. 88(12), pages 4334-4342.
    4. Oh, Si-Doek & Kim, Ki-Young & Oh, Shuk-Bum & Kwak, Ho-Young, 2012. "Optimal operation of a 1-kW PEMFC-based CHP system for residential applications," Applied Energy, Elsevier, vol. 95(C), pages 93-101.
    5. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    6. Hou, Yongping & Wang, Bowen & Yang, Zhihua, 2011. "A method for evaluating the efficiency of PEM fuel cell engine," Applied Energy, Elsevier, vol. 88(4), pages 1181-1186, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Chia-Lien & Chang, Cheng-Ping & Guo, Yi-Hsuan & Yeh, Tsung-Kuang & Su, Yu-Chuan & Wang, Pen-Cheng & Hsueh, Kan-Lin & Tseng, Fan-Gang, 2019. "High-performance and low-leakage phosphoric acid fuel cell with synergic composite membrane stacking of micro glass microfiber and nano PTFE," Renewable Energy, Elsevier, vol. 134(C), pages 982-988.
    2. Fantozzi, F. & Frassoldati, A. & Bartocci, P. & Cinti, G. & Quagliarini, F. & Bidini, G. & Ranzi, E.M., 2016. "An experimental and kinetic modeling study of glycerol pyrolysis," Applied Energy, Elsevier, vol. 184(C), pages 68-76.
    3. Li, Yan & Shi, Yan & Mehio, Nada & Tan, Mingsheng & Wang, Zhiyong & Hu, Xiaohong & Chen, George Z. & Dai, Sheng & Jin, Xianbo, 2016. "More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid," Applied Energy, Elsevier, vol. 175(C), pages 451-458.
    4. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    5. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).
    6. Löbberding, Laurens & Madlener, Reinhard, 2019. "Techno-economic analysis of micro fuel cell cogeneration and storage in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1603-1613.
    7. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    8. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    9. Zhang, Xiaofeng & Liu, Wenjing & Pan, Jinjun & Zhao, Bin & Yi, Zhengyuan & He, Xu & Liu, Yuting & Li, Hongqiang, 2024. "Comprehensive performance assessment of a novel biomass-based CCHP system integrated with SOFC and HT-PEMFC," Energy, Elsevier, vol. 295(C).
    10. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2014. "Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems," Energy, Elsevier, vol. 68(C), pages 989-997.
    11. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Hun Sik & Cho, Changhwan & Kim, Seo Young & Hyun, Jae Min, 2013. "Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer," Applied Energy, Elsevier, vol. 105(C), pages 125-137.
    2. Yang, Puqing & Zhang, Houcheng, 2015. "Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system," Energy, Elsevier, vol. 85(C), pages 458-467.
    3. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2014. "Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems," Energy, Elsevier, vol. 68(C), pages 989-997.
    4. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    5. Zuliani, Nicola & Taccani, Rodolfo, 2012. "Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis," Applied Energy, Elsevier, vol. 97(C), pages 802-808.
    6. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
    7. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    8. Jordi Renau & Víctor García & Luis Domenech & Pedro Verdejo & Antonio Real & Alberto Giménez & Fernando Sánchez & Antonio Lozano & Félix Barreras, 2021. "Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    9. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    10. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    11. Jeon, Seung Won & Cha, Dowon & Kim, Hyung Soon & Kim, Yongchan, 2016. "Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions," Applied Energy, Elsevier, vol. 166(C), pages 165-173.
    12. Viorel Ionescu & Adriana Elena Balan & Alexandra Maria Isabel Trefilov & Ioan Stamatin, 2021. "Exergetic Performance of a PEM Fuel Cell with Laser-Induced Graphene as the Microporous Layer," Energies, MDPI, vol. 14(19), pages 1-18, September.
    13. Chen, Yong-Song & Yang, Chih-Wei & Lee, Jiunn-Yih, 2014. "Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration," Applied Energy, Elsevier, vol. 113(C), pages 1519-1524.
    14. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
    15. Jannelli, Elio & Minutillo, Mariagiovanna & Perna, Alessandra, 2013. "Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances," Applied Energy, Elsevier, vol. 108(C), pages 82-91.
    16. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    17. Jaggi, Vikas & Jayanti, S., 2013. "A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer," Applied Energy, Elsevier, vol. 110(C), pages 295-303.
    18. Bruni, G. & Cordiner, S. & Mulone, V., 2014. "Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system," Energy, Elsevier, vol. 77(C), pages 133-143.
    19. Di Marcoberardino, G. & Chiarabaglio, L. & Manzolini, G. & Campanari, S., 2019. "A Techno-economic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications," Applied Energy, Elsevier, vol. 239(C), pages 692-705.
    20. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:109:y:2013:i:c:p:192-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.