IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp168-175.html
   My bibliography  Save this article

Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production

Author

Listed:
  • Zheng, Yi
  • Yu, Chaowei
  • Cheng, Yu-Shen
  • Lee, Christopher
  • Simmons, Christopher W.
  • Dooley, Todd M.
  • Zhang, Ruihong
  • Jenkins, Bryan M.
  • VanderGheynst, Jean S.

Abstract

Sugar beet pulp (SBP) as received has a fairly high moisture content of 75–85%, which makes SBP storage a challenge. Ensilage was studied over 90days and was found to effectively preserve SBP without lactic acid bacterium inoculation. Higher packing density yielded a slightly better silage quality. Ensilage improved sugar yield upon enzymatic hydrolysis of ensiled SBP washed with water. However, neither washing nor sterilization improved ethanol production from ensiled SBP using Escherichia coli KO11, suggesting ensiled SBP could be used directly in fermentation. The ethanol yield from ensiled SBP was nearly 50% higher than raw SBP. Fed-batch fermentation obtained approximately 30% higher ethanol yield than batch. Fed-batch could also be carried out at 12% solid loading with a 50% lower enzyme dosage compared to batch at the same solid loading, indicating opportunities to improve the economics of SBP conversion into liquid fuels.

Suggested Citation

  • Zheng, Yi & Yu, Chaowei & Cheng, Yu-Shen & Lee, Christopher & Simmons, Christopher W. & Dooley, Todd M. & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2012. "Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production," Applied Energy, Elsevier, vol. 93(C), pages 168-175.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:168-175
    DOI: 10.1016/j.apenergy.2011.12.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vervaeren, H. & Hostyn, K. & Ghekiere, G. & Willems, B., 2010. "Biological ensilage additives as pretreatment for maize to increase the biogas production," Renewable Energy, Elsevier, vol. 35(9), pages 2089-2093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dodić, Jelena M. & Vučurović, Damjan G. & Dodić, Siniša N. & Grahovac, Jovana A. & Popov, Stevan D. & Nedeljković, Nataša M., 2012. "Kinetic modelling of batch ethanol production from sugar beet raw juice," Applied Energy, Elsevier, vol. 99(C), pages 192-197.
    2. Choi, In Seong & Kim, Jae-Hoon & Wi, Seung Gon & Kim, Kyoung Hyoun & Bae, Hyeun-Jong, 2013. "Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 204-210.
    3. Raele, Ricardo & Boaventura, João Mauricio Gama & Fischmann, Adalberto Américo & Sarturi, Greici, 2014. "Scenarios for the second generation ethanol in Brazil," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 205-223.
    4. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    5. Joanna Berlowska & Katarzyna Pielech-Przybylska & Maria Balcerek & Weronika Cieciura & Sebastian Borowski & Dorota Kregiel, 2017. "Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp," Energies, MDPI, vol. 10(9), pages 1-16, August.
    6. Zhang, Xinghua & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Huang, Xiaoming & Yu, Yuxiao, 2013. "Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 533-538.
    7. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    8. Wirawan, Ferdian & Cheng, Chieh-Lun & Kao, Wei-Chen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis," Applied Energy, Elsevier, vol. 100(C), pages 19-26.
    9. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    10. Borowski, Sebastian & Kucner, Marcin & Czyżowska, Agata & Berłowska, Joanna, 2016. "Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp," Renewable Energy, Elsevier, vol. 99(C), pages 492-500.
    11. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    12. Domínguez, Elena & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2017. "Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme," Applied Energy, Elsevier, vol. 187(C), pages 777-789.
    13. Andrzej Baryga & Rafał Ziobro & Dorota Gumul & Justyna Rosicka-Kaczmarek & Karolina Miśkiewicz, 2023. "Physicochemical Properties and Evaluation of Antioxidant Potential of Sugar Beet Pulp—Preliminary Analysis for Further Use (Future Prospects)," Agriculture, MDPI, vol. 13(5), pages 1-17, May.
    14. Manochio, C. & Andrade, B.R. & Rodriguez, R.P. & Moraes, B.S., 2017. "Ethanol from biomass: A comparative overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 743-755.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Almeida, Claudinei & Bariccatti, Reinaldo Aparecido & Frare, Laercio Mantovani & Camargo Nogueira, Carlos Eduardo & Mondardo, Andrei Antônio & Contini, Leonardo & Gomes, Gláucio José & Rovaris, Sol, 2017. "Analysis of the socio-economic feasibility of the implementation of an agro-energy condominium in western Paraná – Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 601-608.
    2. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    3. Nahak, B.K. & Preetam, S. & Sharma, Deepa & Shukla, S.K. & Syväjärvi, Mikael & Toncu, Dana-Cristina & Tiwari, Ashutosh, 2022. "Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. González-González, A. & Cuadros, F., 2014. "Optimal and cost-effective industrial biomethanation of tobacco," Renewable Energy, Elsevier, vol. 63(C), pages 280-285.
    5. Franco, Rúben Teixeira & Buffière, Pierre & Bayard, Rémy, 2018. "Co-ensiling of cattle manure before biogas production: Effects of fermentation stimulants and inhibitors on biomass and methane preservation," Renewable Energy, Elsevier, vol. 121(C), pages 315-323.
    6. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    7. McEniry, J. & Allen, E. & Murphy, J.D. & O'Kiely, P., 2014. "Grass for biogas production: The impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems," Renewable Energy, Elsevier, vol. 63(C), pages 524-530.
    8. Nolan, Pearl & Doyle, Evelyn M. & Grant, Jim & O'Kiely, Pádraig, 2018. "Upgrading grass biomass during ensiling with contrasting fibrolytic enzyme additives for enhanced methane production," Renewable Energy, Elsevier, vol. 115(C), pages 462-473.
    9. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    10. Małgorzata Fugol & Hubert Prask & Józef Szlachta & Arkadiusz Dyjakon & Marta Pasławska & Szymon Szufa, 2023. "Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion," Energies, MDPI, vol. 16(4), pages 1-12, February.
    11. Villa, Raffaella & Ortega Rodriguez, Lelia & Fenech, Cecilia & Anika, Ogemdi Chinwendu, 2020. "Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    13. Zhang, Yi & Li, Lianhua & Kang, Xihui & Sun, Yongming & Yuan, Zhenhong & Xing, Tao & Lin, Richen, 2019. "Improving methane production from Pennisetum hybrid by monitoring plant height and ensiling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 57-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:168-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.