IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i9p2089-2093.html
   My bibliography  Save this article

Biological ensilage additives as pretreatment for maize to increase the biogas production

Author

Listed:
  • Vervaeren, H.
  • Hostyn, K.
  • Ghekiere, G.
  • Willems, B.

Abstract

Several biological ensilage additives were tested on maize substrate for their effect on biogas production and preservation of ODM content. In general, the addition of some biological additives and subsequent storage for 7 weeks could enhance the biogas and biomethane production per ODM when compared to the untreated sample. A common microbial inoculent containing homo-fermentative and hetero-fermentative bacteria (Bonsilage Mais®), had no beneficial effect on biogas and biomethane production compared with the non-treated sample (−12.7% and −13.1% per ODM, respectively). More complex additives with hetero- and homo-fermentative activity (Silasil Energy®) as well as enzymes (Sil-all 4×4®) or bacteria and yeasts (Microferm®) did effectively increase the biogas production per ODM (respectively with 11.8, 10.1 and 14.7%). Losses in ODM content were minor in all samples. These results might indicate that more divergent biological additives involving yeasts or enzymes during ensiling are preferred as maize preservation tools for anaerobic digestion instead of a spontaneous ensilage population or to add only homo- and hetero-fermentative strains. The nature of the additive might enhance the hydrolysis step in the anaerobic digestion process by decomposing complex carbohydrate structures.

Suggested Citation

  • Vervaeren, H. & Hostyn, K. & Ghekiere, G. & Willems, B., 2010. "Biological ensilage additives as pretreatment for maize to increase the biogas production," Renewable Energy, Elsevier, vol. 35(9), pages 2089-2093.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:9:p:2089-2093
    DOI: 10.1016/j.renene.2010.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110000595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nahak, B.K. & Preetam, S. & Sharma, Deepa & Shukla, S.K. & Syväjärvi, Mikael & Toncu, Dana-Cristina & Tiwari, Ashutosh, 2022. "Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. González-González, A. & Cuadros, F., 2014. "Optimal and cost-effective industrial biomethanation of tobacco," Renewable Energy, Elsevier, vol. 63(C), pages 280-285.
    3. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    4. de Almeida, Claudinei & Bariccatti, Reinaldo Aparecido & Frare, Laercio Mantovani & Camargo Nogueira, Carlos Eduardo & Mondardo, Andrei Antônio & Contini, Leonardo & Gomes, Gláucio José & Rovaris, Sol, 2017. "Analysis of the socio-economic feasibility of the implementation of an agro-energy condominium in western Paraná – Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 601-608.
    5. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    6. Małgorzata Fugol & Hubert Prask & Józef Szlachta & Arkadiusz Dyjakon & Marta Pasławska & Szymon Szufa, 2023. "Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion," Energies, MDPI, vol. 16(4), pages 1-12, February.
    7. McEniry, J. & Allen, E. & Murphy, J.D. & O'Kiely, P., 2014. "Grass for biogas production: The impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems," Renewable Energy, Elsevier, vol. 63(C), pages 524-530.
    8. Nolan, Pearl & Doyle, Evelyn M. & Grant, Jim & O'Kiely, Pádraig, 2018. "Upgrading grass biomass during ensiling with contrasting fibrolytic enzyme additives for enhanced methane production," Renewable Energy, Elsevier, vol. 115(C), pages 462-473.
    9. Villa, Raffaella & Ortega Rodriguez, Lelia & Fenech, Cecilia & Anika, Ogemdi Chinwendu, 2020. "Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Zheng, Yi & Yu, Chaowei & Cheng, Yu-Shen & Lee, Christopher & Simmons, Christopher W. & Dooley, Todd M. & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2012. "Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production," Applied Energy, Elsevier, vol. 93(C), pages 168-175.
    11. Franco, Rúben Teixeira & Buffière, Pierre & Bayard, Rémy, 2018. "Co-ensiling of cattle manure before biogas production: Effects of fermentation stimulants and inhibitors on biomass and methane preservation," Renewable Energy, Elsevier, vol. 121(C), pages 315-323.
    12. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    13. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    14. Zhang, Yi & Li, Lianhua & Kang, Xihui & Sun, Yongming & Yuan, Zhenhong & Xing, Tao & Lin, Richen, 2019. "Improving methane production from Pennisetum hybrid by monitoring plant height and ensiling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 57-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:9:p:2089-2093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.