IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v105y2013icp349-357.html
   My bibliography  Save this article

The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen

Author

Listed:
  • Varrone, C.
  • Liberatore, R.
  • Crescenzi, T.
  • Izzo, G.
  • Wang, A.

Abstract

The worldwide energy demand has been continuously increasing, thus requesting more sustainable alternatives to the rapidly depleting fossil fuels. Therefore, biofuels such as hydrogen, bioethanol and biodiesel are gaining more importance as a renewable and pollution-free solution, which might give a significant contribution to the future energy mix. In recent years, the exponential growth of biodiesel production has led to a glycerol glut, however, according to some authors, crude glycerol might represent a suitable, abundant and low-priced feedstock for fermentation technologies. In this study we performed an energetic and economic assessment of an innovative process, which is under development in our lab, for the bioconversion of crude glycerol into ethanol and hydrogen. Ongoing experiments showed the possibility to reach at least 26g/L of ethanol, together with 9L of hydrogen, in non-sterile conditions and without nutrient supplements. Since kinetics and ethanol concentration need to be further improved, we performed this study with a view to evaluate the possibility of reaching economic viability. Results showed that with 26g/L of ethanol and a retention time as high as 120h, the calculated energy cost would be about 0.019€/kWhth and 0.057€/kWhel, considering the contribution of both, hydrogen and bioethanol. Moreover, bioethanol cost would be as low as 0.21€/L, even without taking into account the possible hydrogen revenues. These results are very promising and suggest that the process has reasonable chances to achieve economic viability, thus deserving further attention. The procedure followed in this work provided a realistic and concrete target to pursue in the future lab experiments, in order to bring this technology closer to the market.

Suggested Citation

  • Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
  • Handle: RePEc:eee:appene:v:105:y:2013:i:c:p:349-357
    DOI: 10.1016/j.apenergy.2013.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300024X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Suiran & Tao, Jing, 2009. "Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation," Applied Energy, Elsevier, vol. 86(Supplemen), pages 178-188, November.
    2. Santori, Giulio & Di Nicola, Giovanni & Moglie, Matteo & Polonara, Fabio, 2012. "A review analyzing the industrial biodiesel production practice starting from vegetable oil refining," Applied Energy, Elsevier, vol. 92(C), pages 109-132.
    3. Qiu, Huanguang & Huang, Jikun & Yang, Jun & Rozelle, Scott & Zhang, Yuhua & Zhang, Yahui & Zhang, Yanli, 2010. "Bioethanol development in China and the potential impacts on its agricultural economy," Applied Energy, Elsevier, vol. 87(1), pages 76-83, January.
    4. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    5. Hammond, G.P. & Kallu, S. & McManus, M.C., 2008. "Development of biofuels for the UK automotive market," Applied Energy, Elsevier, vol. 85(6), pages 506-515, June.
    6. Zhou, Wei & Yang, Hongxing & Rissanen, Markku & Nygren, Bertil & Yan, Jinyue, 2012. "Decrease of energy demand for bioethanol-based polygeneration system through case study," Applied Energy, Elsevier, vol. 95(C), pages 305-311.
    7. Börjesson, Pål, 2009. "Good or bad bioethanol from a greenhouse gas perspective - What determines this?," Applied Energy, Elsevier, vol. 86(5), pages 589-594, May.
    8. Zheng, Yi & Yu, Chaowei & Cheng, Yu-Shen & Lee, Christopher & Simmons, Christopher W. & Dooley, Todd M. & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2012. "Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production," Applied Energy, Elsevier, vol. 93(C), pages 168-175.
    9. He, Jie & Zhang, Wennan, 2011. "Techno-economic evaluation of thermo-chemical biomass-to-ethanol," Applied Energy, Elsevier, vol. 88(4), pages 1224-1232, April.
    10. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    11. Sigurbjornsdottir, Margret Audur & Orlygsson, Johann, 2012. "Combined hydrogen and ethanol production from sugars and lignocellulosic biomass by Thermoanaerobacterium AK54, isolated from hot spring," Applied Energy, Elsevier, vol. 97(C), pages 785-791.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Rajaei, Kourosh & Tarighi, Sara, 2018. "Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes," Applied Energy, Elsevier, vol. 230(C), pages 1347-1379.
    2. Demichelis, Francesca & Fiore, Silvia & Pleissner, Daniel & Venus, Joachim, 2018. "Technical and economic assessment of food waste valorization through a biorefinery chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 38-48.
    3. Remón, J. & Arcelus-Arrillaga, P. & García, L. & Arauzo, J., 2018. "Simultaneous production of gaseous and liquid biofuels from the synergetic co-valorisation of bio-oil and crude glycerol in supercritical water," Applied Energy, Elsevier, vol. 228(C), pages 2275-2287.
    4. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    5. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński & Aneta Ignaciuk & Sandra Mlonek & Jordi Cruz Sanchez, 2024. "The Biosynthesis of Liquid Fuels and Other Value-Added Products Based on Waste Glycerol—A Comprehensive Review and Bibliometric Analysis," Energies, MDPI, vol. 17(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    2. He, Jie & Zhang, Wennan, 2011. "Techno-economic evaluation of thermo-chemical biomass-to-ethanol," Applied Energy, Elsevier, vol. 88(4), pages 1224-1232, April.
    3. Li, Junjie & Cheng, Wanjing, 2020. "Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol," Applied Energy, Elsevier, vol. 277(C).
    4. Fan, Senqing & Xiao, Zeyi & Li, Minghai & Li, Sizhong, 2016. "Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production," Applied Energy, Elsevier, vol. 179(C), pages 939-947.
    5. Buresová, Iva & Hrivna, Ludek, 2011. "Effect of wheat gluten proteins on bioethanol yield from grain," Applied Energy, Elsevier, vol. 88(4), pages 1205-1210, April.
    6. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    7. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    8. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    9. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    10. Sarma, Saurabh Jyoti & Pachapur, Vinayak & Brar, Satinder Kaur & Le Bihan, Yann & Buelna, Gerardo, 2015. "Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 942-951.
    11. Wen, Pei-Ling & Lin, Jin-Xu & Lin, Shih-Mo & Feng, Chun-Chiang & Ko, Fu-Kuang, 2015. "Optimal production of cellulosic ethanol from Taiwan's agricultural waste," Energy, Elsevier, vol. 89(C), pages 294-304.
    12. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    13. Zhang, Yan & Zhang, Fang & Chen, Man & Chu, Pei-Na & Ding, Jing & Zeng, Raymond J., 2013. "Hydrogen supersaturation in extreme-thermophilic (70°C) mixed culture fermentation," Applied Energy, Elsevier, vol. 109(C), pages 213-219.
    14. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    15. Yang, Yu & Abu-Omar, Mahdi M. & Hu, Changwei, 2012. "Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate," Applied Energy, Elsevier, vol. 99(C), pages 80-84.
    16. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    17. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    18. Pazuch, Felix Augusto & Nogueira, Carlos Eduardo Camargo & Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Friedrich, Leandro & Lenz, Anderson Miguel, 2017. "Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 34-42.
    19. Egle Gusciute & Ger Devlin & Fionnuala Murphy & Kevin McDonnell, 2014. "Transport sector in Ireland: can 2020 national policy targets drive indigenous biofuel production to success?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 310-322, May.
    20. Silva, V. & Ratti, R.P. & Sakamoto, I.K. & Andrade, M.V.F. & Varesche, M.B.A., 2018. "Biotechnological products in batch reactors obtained from cellulose, glucose and xylose using thermophilic anaerobic consortium," Renewable Energy, Elsevier, vol. 125(C), pages 537-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:105:y:2013:i:c:p:349-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.