IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp492-500.html
   My bibliography  Save this article

Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp

Author

Listed:
  • Borowski, Sebastian
  • Kucner, Marcin
  • Czyżowska, Agata
  • Berłowska, Joanna

Abstract

This study investigates the co-digestion of poultry manure (PM) with sugar beet pulp residues (SBPR) obtained from saccharification and dewatering of sugar beet pulp. The laboratory-scale experiments were conducted under batch and semi-continuous conditions at mesophilic temperatures (35 °C). Batch tests gave specific biogas and methane yields of 590 dm3/kgVSfed and 423 dm3CH4/kgVSfed, respectively for SBPR, whereas the corresponding values for PM were 434 dm3/kgVSfed and 300 dm3CH4/kgVSfed. The co-digestion of PM with SBPR was found to increase biogas and methane yields compared to the manure alone. In semi-continuous reactor experiments, the highest methane yield of 346 dm3 CH4/kgVSfed was achieved for the mixture containing poultry manure with 50% SBPR (weight basis) and a solids retention time (SRT) of 20 days. However, when poultry manure was digested as a sole feedstock, the biogas production was inhibited by ammonia, whereas the co-digestion of PM with 25% SBPR was slightly affected by volatile fatty acids, which concentrations exceeded 4000 g/m3.

Suggested Citation

  • Borowski, Sebastian & Kucner, Marcin & Czyżowska, Agata & Berłowska, Joanna, 2016. "Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp," Renewable Energy, Elsevier, vol. 99(C), pages 492-500.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:492-500
    DOI: 10.1016/j.renene.2016.07.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Yi & Yu, Chaowei & Cheng, Yu-Shen & Lee, Christopher & Simmons, Christopher W. & Dooley, Todd M. & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2012. "Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production," Applied Energy, Elsevier, vol. 93(C), pages 168-175.
    2. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    3. Alkaya, Emrah & Demirer, Göksel N., 2011. "Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors," Renewable Energy, Elsevier, vol. 36(3), pages 971-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narisetty, Vivek & Narisetty, Sudheera & Jacob, Samuel & Kumar, Deepak & Leeke, Gary A. & Chandel, Anuj Kumar & Singh, Vijai & Srivastava, Vimal Chandra & Kumar, Vinod, 2022. "Biological production and recovery of 2,3-butanediol using arabinose from sugar beet pulp by Enterobacter ludwigii," Renewable Energy, Elsevier, vol. 191(C), pages 394-404.
    2. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    3. Joanna Berlowska & Katarzyna Pielech-Przybylska & Maria Balcerek & Weronika Cieciura & Sebastian Borowski & Dorota Kregiel, 2017. "Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp," Energies, MDPI, vol. 10(9), pages 1-16, August.
    4. Przemysław Liczbiński & Sebastian Borowski, 2021. "Co-Digestion of Kitchen Waste with Grass and Leaves after Hyperthermophilic Pretreatment for Methane and Hydrogen Production," Energies, MDPI, vol. 14(18), pages 1-9, September.
    5. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    6. Tańczuk, M. & Junga, R. & Werle, S. & Chabiński, M. & Ziółkowski, Ł., 2019. "Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass," Renewable Energy, Elsevier, vol. 136(C), pages 1055-1063.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    2. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    3. Sayedin, Farid & Kermanshahi-pour, Azadeh & He, Quan Sophia, 2019. "Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio," Renewable Energy, Elsevier, vol. 135(C), pages 975-983.
    4. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    5. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    6. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Su, Xing & Shao, Xiaolu & Geng, Yining & Tian, Shaochen & Huang, Yixiang, 2022. "Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system," Renewable Energy, Elsevier, vol. 197(C), pages 59-68.
    8. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    9. Andrzej Baryga & Rafał Ziobro & Dorota Gumul & Justyna Rosicka-Kaczmarek & Karolina Miśkiewicz, 2023. "Physicochemical Properties and Evaluation of Antioxidant Potential of Sugar Beet Pulp—Preliminary Analysis for Further Use (Future Prospects)," Agriculture, MDPI, vol. 13(5), pages 1-17, May.
    10. Joanna Berlowska & Katarzyna Pielech-Przybylska & Maria Balcerek & Weronika Cieciura & Sebastian Borowski & Dorota Kregiel, 2017. "Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp," Energies, MDPI, vol. 10(9), pages 1-16, August.
    11. Riggio, Vincenzo & Comino, Elena & Rosso, Maurizio, 2015. "Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp," Renewable Energy, Elsevier, vol. 83(C), pages 1043-1049.
    12. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    13. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    14. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
    15. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    16. Addam Claes & Lucy Melchi & Sibel Uludag-Demirer & Goksel N. Demirer, 2021. "Supplementation of Carbon-Based Conductive Materials and Trace Metals to Improve Biogas Production from Apple Pomace," Sustainability, MDPI, vol. 13(17), pages 1-11, August.
    17. Zhang, Xinghua & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Huang, Xiaoming & Yu, Yuxiao, 2013. "Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 533-538.
    18. Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
    19. Browne, James D. & Allen, Eoin & Murphy, Jerry D., 2014. "Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation," Applied Energy, Elsevier, vol. 128(C), pages 307-314.
    20. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:492-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.