Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2011.02.026
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhou, Guobing & Yang, Yongping & Wang, Xin & Cheng, Jinming, 2010. "Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves," Applied Energy, Elsevier, vol. 87(8), pages 2666-2672, August.
- Wang, Lijiu & Meng, Duo, 2010. "Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 87(8), pages 2660-2665, August.
- Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage," Applied Energy, Elsevier, vol. 86(9), pages 1479-1483, September.
- Zhou, Guobing & Zhang, Yinping & Zhang, Qunli & Lin, Kunping & Di, Hongfa, 2007. "Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates," Applied Energy, Elsevier, vol. 84(10), pages 1068-1077, October.
- Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using [beta]-Aluminum nitride," Applied Energy, Elsevier, vol. 86(7-8), pages 1196-1200, July.
- Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing, 2009. "Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials," Applied Energy, Elsevier, vol. 86(2), pages 170-174, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Changzhong & Zhao, Yiyang & Liu, Wenmin, 2013. "Electrospun polyethylene glycol/cellulose acetate phase change fibers with core–sheath structure for thermal energy storage," Renewable Energy, Elsevier, vol. 60(C), pages 222-225.
- Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
- Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
- Chen, Weiwang & Weng, Wenguo, 2016. "Ultrafine lauric–myristic acid eutectic/poly (meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning," Applied Energy, Elsevier, vol. 173(C), pages 168-176.
- Ajiv Alam Khan & Syed Mohd Yahya & Masood Ashraf Ali, 2022. "Synthesis and Characterization of Titania–MXene-Based Phase Change Material for Sustainable Thermal Energy Storage," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
- Qian, Yong & Wei, Ping & Jiang, Pingkai & Li, Zhi & Yan, Yonggang & Liu, Jiping, 2013. "Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application," Applied Energy, Elsevier, vol. 106(C), pages 321-327.
- Huanmei Yuan & Sitong Liu & Tonghe Li & Liyun Yang & Dehong Li & Hao Bai & Xiaodong Wang, 2024. "Review on Thermal Properties with Influence Factors of Solid–Liquid Organic Phase-Change Micro/Nanocapsules," Energies, MDPI, vol. 17(3), pages 1-51, January.
- Gutierrez, Andrea & Ushak, Svetlana & Galleguillos, Hector & Fernandez, Angel & Cabeza, Luisa F. & Grágeda, Mario, 2015. "Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material," Applied Energy, Elsevier, vol. 154(C), pages 616-621.
- Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.
- Wu, Yang & Chen, Changzhong & Jia, Yifan & Wu, Jie & Huang, Yong & Wang, Linge, 2018. "Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage," Applied Energy, Elsevier, vol. 210(C), pages 167-181.
- Suárez-García, Andrés & Arce, Elena & Alford, Laura & Luhrs, Claudia C., 2023. "Electrospun composite fibers containing organic phase change materials for thermo-regulation: Trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cai, Yibing & Ke, Huizhen & Dong, Ju & Wei, Qufu & Lin, Jiulong & Zhao, Yong & Song, Lei & Hu, Yuan & Huang, Fenglin & Gao, Weidong & Fong, Hao, 2011. "Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials," Applied Energy, Elsevier, vol. 88(6), pages 2106-2112, June.
- Qian, Yong & Wei, Ping & Jiang, Pingkai & Li, Zhi & Yan, Yonggang & Liu, Jiping, 2013. "Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application," Applied Energy, Elsevier, vol. 106(C), pages 321-327.
- Kenisarin, Murat M. & Kenisarina, Kamola M., 2012. "Form-stable phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1999-2040.
- Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
- Abdelwaheb Trigui & Makki Abdelmouleh, 2023. "Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
- Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.
- Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
- Grosu, Yaroslav & Zhao, Yanqi & Giacomello, Alberto & Meloni, Simone & Dauvergne, Jean-Luc & Nikulin, Artem & Palomo, Elena & Ding, Yulong & Faik, Abdessamad, 2020. "Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials," Applied Energy, Elsevier, vol. 269(C).
- Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
- SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
- Zeng, Ju-Lan & Zheng, Shuang-Hao & Yu, Sai-Bo & Zhu, Fu-Rong & Gan, Juan & Zhu, Ling & Xiao, Zhong-Liang & Zhu, Xin-Yu & Zhu, Zhen & Sun, Li-Xian & Cao, Zhong, 2014. "Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials," Applied Energy, Elsevier, vol. 115(C), pages 603-609.
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
- Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
- Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
- Gutierrez, Andrea & Ushak, Svetlana & Galleguillos, Hector & Fernandez, Angel & Cabeza, Luisa F. & Grágeda, Mario, 2015. "Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material," Applied Energy, Elsevier, vol. 154(C), pages 616-621.
- Pielichowska, Kinga & Nowak, Michał & Szatkowski, Piotr & Macherzyńska, Beata, 2016. "The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene," Applied Energy, Elsevier, vol. 162(C), pages 1024-1033.
- Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Wang, Xiaotong, 2017. "Techno-economic assessment of mobilized thermal energy storage for distributed users: A case study in China," Applied Energy, Elsevier, vol. 194(C), pages 481-486.
- Giampietro Fabbri & Matteo Greppi & Federico Amati, 2024. "Numerical Analysis of New PCM Thermal Storage Systems," Energies, MDPI, vol. 17(7), pages 1-12, April.
- Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
- Mu, Mulan & Basheer, P.A.M. & Sha, Wei & Bai, Yun & McNally, Tony, 2016. "Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes," Applied Energy, Elsevier, vol. 162(C), pages 68-82.
More about this item
Keywords
Electrospinning; Morphology; PEG; Phase change fiber; Thermal properties;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:9:p:3133-3139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.