IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i5p1792-1796.html
   My bibliography  Save this article

Evaluation of an adapted inhibitor-tolerant yeast strain for ethanol production from combined hydrolysate of softwood

Author

Listed:
  • Tian, Shen
  • Zhu, Junyong
  • Yang, Xiushan

Abstract

In order to evaluate the potential of an adapted inhibitor-tolerant yeast strain developed in our lab to produce ethanol from softwood, the effect of furfural and HMF presented in defined medium and pretreatment hydrolysate on cell growth was investigated. And the efficiency of ethanol production from enzymatic hydrolysate mixed with pretreatment hydrolysate of softwood by bisulfite and sulfuric acid pretreatment process was reported. The results showed that in the combined treatments of the two inhibitors, cell growth was not affected at 1Â g/L each of furfural and HMF. When 3Â g/L each of furfural and HMF was applied, the adapted strain responded with an extended lag phase of 24Â h. Both in batch and fed-batch runs of combined hydrolysate fermentation, the final ethanol concentrations were above 20.0Â g/L and the ethanol yields (Yp/s) on the total amount of fermentable sugar presented in the pretreated materials were above 0.40Â g/g. It implies the great promise of the yeast strain for improving ethanol production from softwood due to its high ability of metabolizing inhibitor compounds of furfural and HMF.

Suggested Citation

  • Tian, Shen & Zhu, Junyong & Yang, Xiushan, 2011. "Evaluation of an adapted inhibitor-tolerant yeast strain for ethanol production from combined hydrolysate of softwood," Applied Energy, Elsevier, vol. 88(5), pages 1792-1796, May.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1792-1796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00500-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Yi & Pan, Zhongli & Zhang, Ruihong & Wang, Donghai, 2009. "Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production," Applied Energy, Elsevier, vol. 86(11), pages 2459-2465, November.
    2. Mesa, Leyanis & González, Erenio & Ruiz, Encarnación & Romero, Inmaculada & Cara, Cristóbal & Felissia, Fernando & Castro, Eulogio, 2010. "Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design," Applied Energy, Elsevier, vol. 87(1), pages 109-114, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
    2. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    3. Wang, Tiejun & Li, Kai & Liu, Qiying & Zhang, Qing & Qiu, Songbai & Long, Jinxing & Chen, Lungang & Ma, Longlong & Zhang, Qi, 2014. "Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase," Applied Energy, Elsevier, vol. 136(C), pages 775-780.
    4. Zhang, Xinghua & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Huang, Xiaoming & Yu, Yuxiao, 2013. "Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 533-538.
    5. Dong, Chengyu & Wang, Ying & Chan, Ka-Lai & Bhatia, Akanksha & Leu, Shao-Yuan, 2018. "Temperature profiling to maximize energy yield with reduced water input in a lignocellulosic ethanol biorefinery," Applied Energy, Elsevier, vol. 214(C), pages 63-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lou, Rui & Wu, Shu-bin, 2011. "Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin," Applied Energy, Elsevier, vol. 88(1), pages 316-322, January.
    2. Park, Yong Cheol & Kim, Jun Seok, 2012. "Comparison of various alkaline pretreatment methods of lignocellulosic biomass," Energy, Elsevier, vol. 47(1), pages 31-35.
    3. Cybulska, Iwona & Brudecki, Grzegorz P. & Zembrzuska, Joanna & Schmidt, Jens Ejbye & Lopez, Celia Garcia-Banos & Thomsen, Mette Hedegaard, 2017. "Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates," Applied Energy, Elsevier, vol. 185(P2), pages 1040-1050.
    4. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    5. He, Jie & Zhang, Wennan, 2011. "Techno-economic evaluation of thermo-chemical biomass-to-ethanol," Applied Energy, Elsevier, vol. 88(4), pages 1224-1232, April.
    6. Moretti, Marcia Maria de Souza & Bocchini-Martins, Daniela Alonso & Nunes, Christiane da Costa Carreira & Villena, Maria Arévalo & Perrone, Olavo Micali & Silva, Roberto da & Boscolo, Maurício & Gomes, 2014. "Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 122(C), pages 189-195.
    7. Halder, Pobitra & Kundu, Sazal & Patel, Savankumar & Setiawan, Adi & Atkin, Rob & Parthasarthy, Rajarathinam & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Shah, Kalpit, 2019. "Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 268-292.
    8. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    9. Byun, Jaewon & Han, Jeehoon, 2020. "Economic feasible strategy of cellulosic biofuels: Co-production of pentanediols," Energy, Elsevier, vol. 193(C).
    10. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    11. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    12. Shafiei, Marzieh & Zilouei, Hamid & Zamani, Akram & Taherzadeh, Mohammad J. & Karimi, Keikhosro, 2013. "Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 163-169.
    13. Sun, Shao-Long & Wen, Jia-Long & Ma, Ming-Guo & Sun, Run-Cang, 2014. "Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments," Applied Energy, Elsevier, vol. 136(C), pages 519-526.
    14. Mesa, Leyanis & López, Nancy & Cara, Cristóbal & Castro, Eulogio & González, Erenio & Mussatto, Solange I., 2016. "Techno-economic evaluation of strategies based on two steps organosolv pretreatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production," Renewable Energy, Elsevier, vol. 86(C), pages 270-279.
    15. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    16. Liu, Yao & Zheng, Xiaojie & Tao, Shunhui & Hu, Lei & Zhang, Xiaodong & Lin, Xiaoqing, 2021. "Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation," Renewable Energy, Elsevier, vol. 177(C), pages 259-267.
    17. Wirawan, Ferdian & Cheng, Chieh-Lun & Kao, Wei-Chen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis," Applied Energy, Elsevier, vol. 100(C), pages 19-26.
    18. Jafari, Yadollah & Amiri, Hamid & Karimi, Keikhosro, 2016. "Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse," Applied Energy, Elsevier, vol. 168(C), pages 216-225.
    19. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    20. Ruiz, Héctor A. & Rodríguez-Jasso, Rosa M. & Fernandes, Bruno D. & Vicente, António A. & Teixeira, José A., 2013. "Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 35-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1792-1796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.