A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.04.032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016.
"A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China,"
Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
- Hao Chen & Bao-Jun Tang & Hua Liao & Yi-Ming Wei, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," CEEP-BIT Working Papers 97, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Lee, Sin Cherng & Sum Ng, Denny Kok & Yee Foo, Dominic Chwan & Tan, Raymond R., 2009. "Extended pinch targeting techniques for carbon-constrained energy sector planning," Applied Energy, Elsevier, vol. 86(1), pages 60-67, January.
- Atkins, Martin J. & Morrison, Andrew S. & Walmsley, Michael R.W., 2010. "Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector," Applied Energy, Elsevier, vol. 87(3), pages 982-987, March.
- Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
- Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
- Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J., 2015. "Achieving 33% renewable electricity generation by 2020 in California," Energy, Elsevier, vol. 92(P3), pages 260-269.
- Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
- Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R., 2014. "Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050," Applied Energy, Elsevier, vol. 135(C), pages 656-665.
- Tan, Raymond R. & Foo, Dominic Chwan Yee & Aviso, Kathleen B. & Ng, Denny Kok Sum, 2009. "The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production," Applied Energy, Elsevier, vol. 86(5), pages 605-609, May.
- Zhu, Xuancan & Shi, Yixiang & Cai, Ningsheng, 2016. "Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption," Applied Energy, Elsevier, vol. 176(C), pages 196-208.
- Tapia, John Frederick D. & Lee, Jui-Yuan & Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations," Applied Energy, Elsevier, vol. 184(C), pages 337-345.
- Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
- Foo, Dominic C.Y. & Tan, Raymond R. & Ng, Denny K.S., 2008. "Carbon and footprint-constrained energy planning using cascade analysis technique," Energy, Elsevier, vol. 33(10), pages 1480-1488.
- Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2014. "Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems," Applied Energy, Elsevier, vol. 113(C), pages 477-487.
- Tan, Raymond R. & Foo, Dominic C.Y., 2007. "Pinch analysis approach to carbon-constrained energy sector planning," Energy, Elsevier, vol. 32(8), pages 1422-1429.
- Crilly, Damien & Zhelev, Toshko, 2008. "Emissions targeting and planning: An application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector," Energy, Elsevier, vol. 33(10), pages 1498-1507.
- Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
- Almansoori, Ali & Betancourt-Torcat, Alberto, 2015. "Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system," Applied Energy, Elsevier, vol. 148(C), pages 234-251.
- Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
- Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
- Huang, Yuping & Zheng, Qipeng P. & Fan, Neng & Aminian, Kashy, 2014. "Optimal scheduling for enhanced coal bed methane production through CO2 injection," Applied Energy, Elsevier, vol. 113(C), pages 1475-1483.
- Ohlemüller, Peter & Alobaid, Falah & Gunnarsson, Adrian & Ströhle, Jochen & Epple, Bernd, 2015. "Development of a process model for coal chemical looping combustion and validation against 100kWth tests," Applied Energy, Elsevier, vol. 157(C), pages 433-448.
- Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R. & Chand, Alvin, 2015. "Carbon Emissions Pinch Analysis for emissions reductions in the New Zealand transport sector through to 2050," Energy, Elsevier, vol. 92(P3), pages 569-576.
- Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J. & Jayaweera, Indira, 2016. "Assessment of advanced solvent-based post-combustion CO2 capture processes using a bi-objective optimization technique," Applied Energy, Elsevier, vol. 179(C), pages 1209-1219.
- Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
- Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
- Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.
- Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies," Applied Energy, Elsevier, vol. 205(C), pages 428-439.
- Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
- Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
- Rego, Erik Eduardo & Costa, Oswaldo L.V. & Ribeiro, Celma de Oliveira & Lima Filho, Roberto Ivo da R. & Takada, Hellinton & Stern, Julio, 2020. "The trade-off between demand growth and renewables: A multiperiod electricity planning model under CO2 emission constraints," Energy, Elsevier, vol. 213(C).
- Xiaorong Sun & Xueping Pan & Chenhao Jin & Yihan Li & Qijie Xu & Danxu Zhang & Hongyang Li, 2022. "Life Cycle Assessment-Based Carbon Footprint Accounting Model and Analysis for Integrated Energy Stations in China," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
- Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
- Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
- Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: climate change modelling with backstop technology," MPRA Paper 80549, University Library of Munich, Germany.
- Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
- Rok Gomilšek & Lidija Čuček & Marko Homšak & Raymond R. Tan & Zdravko Kravanja, 2020. "Carbon Emissions Constrained Energy Planning for Aluminum Products," Energies, MDPI, vol. 13(11), pages 1-18, June.
- Lopez, Neil Stephen A. & Foo, Dominic C.Y. & Tan, Raymond R., 2021. "Optimizing regional electricity trading with Carbon Emissions Pinch Analysis," Energy, Elsevier, vol. 237(C).
- Li, Zhiwei & Jia, Xiaoping & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China," Applied Energy, Elsevier, vol. 184(C), pages 1051-1062.
- de Lira Quaresma, Ana Carolina & Francisco, Flávio S. & Pessoa, Fernando L.P. & Queiroz, Eduardo M., 2018. "Carbon emission reduction in the Brazilian electricity sector using Carbon Sources Diagram," Energy, Elsevier, vol. 159(C), pages 134-150.
- Krishna Priya, G.S. & Bandyopadhyay, Santanu, 2017. "Multi-objective pinch analysis for power system planning," Applied Energy, Elsevier, vol. 202(C), pages 335-347.
- Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
- Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
- Nair, Purusothmn Nair S. Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2021. "A generic algebraic targeting approach for integration of renewable energy sources, CO2 capture and storage and negative emission technologies in carbon-constrained energy planning," Energy, Elsevier, vol. 235(C).
- Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.
- Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
- Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R., 2014. "Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050," Applied Energy, Elsevier, vol. 135(C), pages 656-665.
- Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
- Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J., 2015. "Achieving 33% renewable electricity generation by 2020 in California," Energy, Elsevier, vol. 92(P3), pages 260-269.
- Yu, Dongwei & Tan, Hongwei, 2016. "Application of ‘potential carbon’ in energy planning with carbon emission constraints," Applied Energy, Elsevier, vol. 169(C), pages 363-369.
- Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2014. "Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems," Applied Energy, Elsevier, vol. 113(C), pages 477-487.
- Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R. & Chand, Alvin, 2015. "Carbon Emissions Pinch Analysis for emissions reductions in the New Zealand transport sector through to 2050," Energy, Elsevier, vol. 92(P3), pages 569-576.
- Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
More about this item
Keywords
Climate change; Low-carbon technology; Carbon capture and storage (CCS); Emissions reduction; Mathematical programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:198:y:2017:i:c:p:12-20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.