IDEAS home Printed from https://ideas.repec.org/a/taf/ecsysr/v20y2008i1p29-56.html
   My bibliography  Save this article

Sequential Decision-making in Interdependent Sectors with Multiobjective Inoperability Decision Trees: Application to Biofuel Subsidy Analysis

Author

Listed:
  • Joost Santos
  • Kash Barker
  • Paul Zelinke

Abstract

Decision-making involving large-scale systems often involves considerations for temporal changes, interdependencies in organizational structures, multiple competing objectives, and risk and uncertainty, among others. In this paper we develop a risk-based methodology, the Multiobjective Inoperability Decision Tree (MOIDT). It integrates several dimensions of decision-making processes associated with interconnected systems in terms of: (i) evaluation of sequential policies; (ii) analysis of interdependencies; (iii) treatment of multiple objectives and their tradeoffs; and (iv) characterization of uncertainties. To demonstrate the integration of these four components, we present a case study to analyze the impact of government policies towards mass-scale biofuel production. Using a multi-period decision framework, the analysis utilizes economic input-output data to model the probabilistic demand adjustments for sectors that will likely be affected by biofuel policies.

Suggested Citation

  • Joost Santos & Kash Barker & Paul Zelinke, 2008. "Sequential Decision-making in Interdependent Sectors with Multiobjective Inoperability Decision Trees: Application to Biofuel Subsidy Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 29-56.
  • Handle: RePEc:taf:ecsysr:v:20:y:2008:i:1:p:29-56
    DOI: 10.1080/09535310801890672
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09535310801890672
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09535310801890672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kash Barker & Kaycee J. Wilson, 2012. "Decision Trees with Single and Multiple Interval-Valued Objectives," Decision Analysis, INFORMS, vol. 9(4), pages 348-358, December.
    2. Barker, Kash & Haimes, Yacov Y., 2009. "Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 819-829.
    3. Barker, Kash & Santos, Joost R., 2010. "Measuring the efficacy of inventory with a dynamic input-output model," International Journal of Production Economics, Elsevier, vol. 126(1), pages 130-143, July.
    4. Zachary Walchuk & Kash Barker, 2013. "Analyzing interdependent impacts of resource sustainability," Environment Systems and Decisions, Springer, vol. 33(3), pages 391-403, September.
    5. Frini, Anissa & Guitouni, Adel & Martel, Jean-Marc, 2012. "A general decomposition approach for multi-criteria decision trees," European Journal of Operational Research, Elsevier, vol. 220(2), pages 452-460.
    6. Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.
    7. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    8. Elizabeth B. Connelly & Lisa M. Colosi & Andres F. Clarens & James H. Lambert, 2015. "Risk Analysis of Biofuels Industry for Aviation with Scenario‐Based Expert Elicitation," Systems Engineering, John Wiley & Sons, vol. 18(2), pages 178-191, March.
    9. Pratiwi, Astu Sam & Trutnevyte, Evelina, 2022. "Decision paths to reduce costs and increase economic impact of geothermal district heating in Geneva, Switzerland," Applied Energy, Elsevier, vol. 322(C).
    10. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    11. Suzuki, Kengo & Uchiyama, Yohji, 2010. "Quantifying the risk of an increase in the prices of non-energy products by combining the portfolio and input-output approaches," Energy Policy, Elsevier, vol. 38(10), pages 5867-5877, October.
    12. Aristotle T. Ubando & Isidro Antonio V. Marfori & Kathleen B. Aviso & Raymond R. Tan, 2019. "Optimal Operational Adjustment of a Community-Based Off-Grid Polygeneration Plant using a Fuzzy Mixed Integer Linear Programming Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    13. Erik Dietzenbacher & Ronald E. Miller, 2015. "Reflections On The Inoperability Input--Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 27(4), pages 478-486, December.
    14. Shital A. Thekdi & Joost R. Santos, 2016. "Supply Chain Vulnerability Analysis Using Scenario‐Based Input‐Output Modeling: Application to Port Operations," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 1025-1039, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ecsysr:v:20:y:2008:i:1:p:29-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CESR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.