IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i8p2737-2745.html
   My bibliography  Save this article

Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology

Author

Listed:
  • Fan, Weidong
  • Lin, Zhengchun
  • Li, Youyi
  • Zhang, Mingchuan

Abstract

In this paper, the flow field characteristics of over fired air (OFA) for novel low NOx pulverized coal combustion technology are studied. The research was conducted with a 300 MWe tangential firing boiler that was adapted for this technology, and a three-dimensional particle-dynamics anemometer (PDA) was employed on the model to measure the characteristics of gas flow in the burnout area and gas/particle flows under the front panel superheater. The impact of a positive offset at 15°, counter offset at 15° and design case without an offset the OFA relative to the direction of the secondary air jet in the main combustion were considered. With different OFA offsets, the deflection characteristics, the velocity and root mean square (RMS) fluctuation velocity of OFA jet are obtained, as well as the gas/particle flows characteristics under the front panel superheater. The results show that, with a positive offset, an over-large tangential circle is formed, which produces slagging and temp-bias under the panel superheater. However, with a counter offset, the OFA is sent into the center of the chamber, and the particle is forced to the water wall. Compared with the other two conditions and combined with the counterflow of primary air, OFA without an offset for the jet contains a proper tangential circle, strong inflexibility and turbulence, which prevents slagging and burn out.

Suggested Citation

  • Fan, Weidong & Lin, Zhengchun & Li, Youyi & Zhang, Mingchuan, 2010. "Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology," Applied Energy, Elsevier, vol. 87(8), pages 2737-2745, August.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2737-2745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00043-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, L.Z. & ZhiXin, W. & Rui, S. & ShaoZeng, S. & LiZhe, C. & ShaoHua, W. & YuKun, Q., 2002. "Influence of division cone angles between the fuel-rich and the fuel-lean ducts on gas–particle flow and combustion near swirl burners," Energy, Elsevier, vol. 27(12), pages 1119-1130.
    2. Li, Sen & Xu, Tongmo & Hui, Shien & Wei, Xiaolin, 2009. "NOx emission and thermal efficiency of a 300Â MWe utility boiler retrofitted by air staging," Applied Energy, Elsevier, vol. 86(9), pages 1797-1803, September.
    3. Zhou, Hao & Cen, Kefa & Fan, Jianren, 2004. "Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks," Energy, Elsevier, vol. 29(1), pages 167-183.
    4. Luan, Tao & Wang, Xuedong & Hao, Yuzhen & Cheng, Lin, 2009. "Control of NO emission during coal reburning," Applied Energy, Elsevier, vol. 86(9), pages 1783-1787, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Rong & Chen, Zhichao & Zhang, Bo & Zheng, Yu & Li, Zhengqi, 2022. "Impact of radial air staging on gas-particle flow characteristics in an industrial pulverized coal boiler," Energy, Elsevier, vol. 243(C).
    2. Chen, Zhichao & Wang, Qingxiang & Zhang, Xiaoyan & Zeng, Lingyan & Zhang, Xin & He, Tao & Liu, Tao & Li, Zhengqi, 2017. "Industrial-scale investigations of anthracite combustion characteristics and NOx emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners," Applied Energy, Elsevier, vol. 202(C), pages 169-177.
    3. Wang, Qingxiang & Chen, Zhichao & Che, Miaomiao & Zeng, Lingyan & Li, Zhengqi & Song, Minhang, 2016. "Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air," Applied Energy, Elsevier, vol. 182(C), pages 29-38.
    4. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    5. Chen, Zhichao & Wang, Qingxiang & Wang, Bingnan & Zeng, Lingyan & Che, Miaomiao & Zhang, Xin & Li, Zhengqi, 2017. "Anthracite combustion characteristics and NOx formation of a 300MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system," Applied Energy, Elsevier, vol. 189(C), pages 133-141.
    6. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    7. Yuan, Zhenhua & Chen, Zhichao & Wu, Xiaolan & Zhang, Ning & Bian, Liguo & Qiao, Yanyu & Li, Jiawei & Li, Zhengqi, 2022. "An innovative low-NOx combustion technology for industrial pulverized coal boiler: Gas-particle flow characteristics with different radial-air-staged levels," Energy, Elsevier, vol. 260(C).
    8. Kuang, Min & Yang, Guohua & Zhu, Qunyi & Ti, Shuguang & Wang, Zhenfeng, 2017. "Effect of burner location on flow-field deflection and asymmetric combustion in a 600MWe supercritical down-fired boiler," Applied Energy, Elsevier, vol. 206(C), pages 1393-1405.
    9. Chen, Zhichao & Li, Zhengqi & Wang, Zhenwang & Liu, Chunlong & Chen, Lizhe & Zhu, Qunyi & Li, Yuan, 2011. "The influence of distance between adjacent rings on the gas/particle flow characteristics of a conical rings concentrator," Energy, Elsevier, vol. 36(5), pages 2557-2564.
    10. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Yang, Lianjie & Chen, Lizhe, 2011. "Concentrator performance within a centrally fuel-rich primary air burner: Influence of multiple levels," Energy, Elsevier, vol. 36(7), pages 4041-4047.
    11. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Jing, Jianping, 2011. "Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 709-723.
    12. Liu, Guangkui & Chen, Zhichao & Li, Zhengqi & Zong, Qiudong & Zhang, Hao, 2014. "Effect of the arch-supplied over-fire air ratio on gas/solid flow characteristics of a down-fired boiler," Energy, Elsevier, vol. 70(C), pages 95-109.
    13. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    14. Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
    15. Aliya Askarova & Saltanat Bolegenova & Valeriy Maximov & Symbat Bolegenova & Nariman Askarov & Aizhan Nugymanova, 2021. "Computer Technologies of 3D Modeling by Combustion Processes to Create Effective Methods of Burning Solid Fuel and Reduce Harmful Dust and Gas Emissions into the Atmosphere," Energies, MDPI, vol. 14(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Houzhang & Niu, Yanqing & Wang, Xuebin & Xu, Tongmo & Hui, Shien, 2011. "Study of optimal pulverized coal concentration in a four-wall tangentially fired furnace," Applied Energy, Elsevier, vol. 88(4), pages 1164-1168, April.
    2. Hodžić, Nihad & Kazagić, Anes & Smajević, Izet, 2016. "Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas," Applied Energy, Elsevier, vol. 168(C), pages 38-47.
    3. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    4. Sajad Koochakinia & Amir Ebrahimi-Moghadam & Mahdi Deymi-Dashtebayaz, 2022. "Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    5. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    6. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    7. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    8. Żaklin Grądz & Waldemar Wójcik & Konrad Gromaszek & Andrzej Kotyra & Saule Smailova & Aigul Iskakova & Bakhyt Yeraliyeva & Saule Kumargazhanova & Baglan Imanbek, 2023. "Application of Fuzzy Neural Networks in Combustion Process Diagnostics," Energies, MDPI, vol. 17(1), pages 1-19, December.
    9. Zeng, Lingyan & Li, Zhengqi & Zhao, Guangbo & Li, Jing & Zhang, Fucheng & Shen, Shanping & Chen, Lizhe, 2011. "The influence of swirl burner structure on the gas/particle flow characteristics," Energy, Elsevier, vol. 36(10), pages 6184-6194.
    10. Taehyun Lee & Eungsu Han & Un-Chul Moon & Kwang Y. Lee, 2020. "Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission," Energies, MDPI, vol. 13(1), pages 1-15, January.
    11. Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Wang, Lin & Chen, Lizhe, 2011. "Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region," Energy, Elsevier, vol. 36(1), pages 258-267.
    12. Wang, Chang'an & Zhao, Lin & Sun, Ruijin & Zhou, Lei & Jin, Liyan & Che, Defu, 2022. "Experimental study on NO emission and ash deposition during oxy-fuel combustion of high-alkali coal under oxygen-staged conditions," Energy, Elsevier, vol. 251(C).
    13. Liu, Chunlong & Li, Zhengqi & Kong, Weiguang & Zhao, Yang & Chen, Zhichao, 2010. "Bituminous coal combustion in a full-scale start-up ignition burner: Influence of the excess air ratio," Energy, Elsevier, vol. 35(10), pages 4102-4106.
    14. Xiao Wu & Jiong Shen & Yiguo Li & Kwang Y. Lee, 2015. "Steam power plant configuration, design, and control," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(6), pages 537-563, November.
    15. Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
    16. Tang, Yuting & Ma, Xiaoqian & Lai, Zhiyi & Zhou, Daoxi & Lin, Hai & Chen, Yong, 2012. "NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere," Energy, Elsevier, vol. 40(1), pages 300-306.
    17. Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
    18. Ren, Feng & Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zhu, Qunyi, 2011. "Combustion and NOx emissions characteristics of a down-fired 660-MWe utility boiler retro-fitted with air-surrounding-fuel concept," Energy, Elsevier, vol. 36(1), pages 70-77.
    19. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    20. Wang, Pengqian & Wang, Chang'an & Yuan, Maobo & Wang, Chaowei & Zhang, Jinping & Du, Yongbo & Tao, Zichen & Che, Defu, 2020. "Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2737-2745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.