IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2592-d756798.html
   My bibliography  Save this article

Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data

Author

Listed:
  • Sajad Koochakinia

    (Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran)

  • Amir Ebrahimi-Moghadam

    (Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran)

  • Mahdi Deymi-Dashtebayaz

    (Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran)

Abstract

A numerical simulation for analysis and optimization of the performance and NOx production was applied to a natural gas fuel boiler in South Pars Gas Complex. For this purpose, nine actual environmental and operational parameters of a boiler were measured and recorded every two hours and then averaged daily for a year. Using the thermodynamic laws, important parameters such as body and exhaust flue gas losses, as well as the thermal efficiency and exergy efficiencies of the combustor and boiler, were calculated for each day. The results show that, owing to changes in the environmental and operational conditions, the thermal and exergy efficiency of the boiler varied from 83% to 87% and 27% to 32%, respectively, during the year. In addition, by optimizing the excess air percentage, the thermal and exergy efficiencies could be increased by 1.5% and 3%, respectively, for most days of the year.

Suggested Citation

  • Sajad Koochakinia & Amir Ebrahimi-Moghadam & Mahdi Deymi-Dashtebayaz, 2022. "Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2592-:d:756798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
    2. Li, Zhengqi & Liu, Guangkui & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Combustion and NOx emission characteristics of a retrofitted down-fired 660Â MWe utility boiler at different loads," Applied Energy, Elsevier, vol. 88(7), pages 2400-2406, July.
    3. Habib, M.A. & Said, S.A.M. & Al-Bagawi, J.J., 1995. "Thermodynamic performance analysis of the Ghazlan power plant," Energy, Elsevier, vol. 20(11), pages 1121-1130.
    4. Xu, Xiaofeng & Wang, Chenglong & Zhou, Peng, 2021. "GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Li, Sen & Xu, Tongmo & Hui, Shien & Wei, Xiaolin, 2009. "NOx emission and thermal efficiency of a 300Â MWe utility boiler retrofitted by air staging," Applied Energy, Elsevier, vol. 86(9), pages 1797-1803, September.
    6. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    2. Ling, Zhongqian & Ling, Bo & Kuang, Min & Li, Zhengqi & Lu, Ye, 2017. "Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times," Applied Energy, Elsevier, vol. 187(C), pages 689-705.
    3. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    4. Chen, Zhichao & Wang, Qingxiang & Zhang, Xiaoyan & Zeng, Lingyan & Zhang, Xin & He, Tao & Liu, Tao & Li, Zhengqi, 2017. "Industrial-scale investigations of anthracite combustion characteristics and NOx emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners," Applied Energy, Elsevier, vol. 202(C), pages 169-177.
    5. Chen, Zhichao & Wang, Qingxiang & Wang, Bingnan & Zeng, Lingyan & Che, Miaomiao & Zhang, Xin & Li, Zhengqi, 2017. "Anthracite combustion characteristics and NOx formation of a 300MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system," Applied Energy, Elsevier, vol. 189(C), pages 133-141.
    6. Kuang, Min & Li, Zhengqi & Liu, Chunlong & Zhu, Qunyi, 2013. "Experimental study on combustion and NOx emissions for a down-fired supercritical boiler with multiple-injection multiple-staging technology without overfire air," Applied Energy, Elsevier, vol. 106(C), pages 254-261.
    7. Wang, Qingxiang & Chen, Zhichao & Che, Miaomiao & Zeng, Lingyan & Li, Zhengqi & Song, Minhang, 2016. "Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air," Applied Energy, Elsevier, vol. 182(C), pages 29-38.
    8. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    9. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    10. Weiming Liu & Yating Qiu & Lijiang Jia & Hang Zhou, 2022. "Carbon Emissions Trading and Green Technology Innovation—A Quasi-natural Experiment Based on a Carbon Trading Market Pilot," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    11. Guo, Yating & Rosland, Anitha & Ishak, Suryati & Muhammad Senan, Mohammad Khair Afham, 2023. "Public spending and natural resources development: A way toward green economic growth in China," Resources Policy, Elsevier, vol. 86(PB).
    12. Kalimuthu, Selvam & Karmakar, Sujit & Kolar, Ajit Kumar, 2017. "3-E analysis of a Pressurized Pulverized Combined Cycle (PPCC) power plant using high ash Indian coal," Energy, Elsevier, vol. 128(C), pages 634-648.
    13. Hang Yin & Yingai Jin & Liang Li & Wenbo Lv, 2022. "Numerical Investigation on the Impact of Exergy Analysis and Structural Improvement in Power Plant Boiler through Co-Simulation," Energies, MDPI, vol. 15(21), pages 1-19, October.
    14. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    15. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    16. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    17. Behbahaninia, A. & Ramezani, S. & Lotfi Hejrandoost, M., 2017. "A loss method for exergy auditing of steam boilers," Energy, Elsevier, vol. 140(P1), pages 253-260.
    18. Li, Zhengqi & Liu, Guangkui & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Combustion and NOx emission characteristics of a retrofitted down-fired 660Â MWe utility boiler at different loads," Applied Energy, Elsevier, vol. 88(7), pages 2400-2406, July.
    19. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    20. Ahamed, J.U. & Madlool, N.A. & Saidur, R. & Shahinuddin, M.I. & Kamyar, A. & Masjuki, H.H., 2012. "Assessment of energy and exergy efficiencies of a grate clinker cooling system through the optimization of its operational parameters," Energy, Elsevier, vol. 46(1), pages 664-674.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2592-:d:756798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.