IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2557-2564.html
   My bibliography  Save this article

The influence of distance between adjacent rings on the gas/particle flow characteristics of a conical rings concentrator

Author

Listed:
  • Chen, Zhichao
  • Li, Zhengqi
  • Wang, Zhenwang
  • Liu, Chunlong
  • Chen, Lizhe
  • Zhu, Qunyi
  • Li, Yuan

Abstract

A phase Doppler anemometer system was used to study gas-particle flow characteristics of a conical rings concentrator for a centrally fuel-rich burner. The influences of distance between adjacent rings on the distribution of mean axial velocity, particle volume flux, particle number concentration, rich/lean air ratio, concentration ratio and resistance coefficient were obtained. In each cross-section, within the radius range from 0 to 35 mm, the particle axial volume flux for four distances was always far larger than at other radial positions. When x/D was larger than 1.5 and L was larger than 48 mm there was only a slight influence of distance on the concentration ratio. The resistance coefficient decreased with increasing distance and the larger the distance was, the more slowly the resistance coefficient decayed. In the five cross-sections from x/D = 0.1 to 1.5, RCR for the four distances were always greater than 2. This indicates that the centrally fuel-rich burner with a conical rings concentrator for four distances could achieve a stable flame. Although the length of the primary air duct is long enough and the primary air fan total head is limited, it is best to choose the larger distance.

Suggested Citation

  • Chen, Zhichao & Li, Zhengqi & Wang, Zhenwang & Liu, Chunlong & Chen, Lizhe & Zhu, Qunyi & Li, Yuan, 2011. "The influence of distance between adjacent rings on the gas/particle flow characteristics of a conical rings concentrator," Energy, Elsevier, vol. 36(5), pages 2557-2564.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2557-2564
    DOI: 10.1016/j.energy.2011.01.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211000739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.01.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 1206-1213.
    2. Fan, Weidong & Lin, Zhengchun & Li, Youyi & Zhang, Mingchuan, 2010. "Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology," Applied Energy, Elsevier, vol. 87(8), pages 2737-2745, August.
    3. Fan, Weidong & Li, Youyi & Lin, Zhengchun & Zhang, Mingchuan, 2010. "PDA research on a novel pulverized coal combustion technology for a large utility boiler," Energy, Elsevier, vol. 35(5), pages 2141-2148.
    4. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Jing, Jianping, 2011. "Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 709-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chunlong & Li, Zhengqi & Jing, Xinjing & Xie, Yiquan & Zhang, Qinghua & Zong, Qiudong, 2014. "Experimental investigation into gas/particle flow in a down-fired 350 MWe supercritical utility boiler at different over-fire air ratios," Energy, Elsevier, vol. 64(C), pages 771-778.
    2. Ti, Shuguang & Chen, Zhichao & Li, Zhengqi & Xie, Yiquan & Shao, Yunlin & Zong, Qiudong & Zhang, Qinghua & Zhang, Hao & Zeng, Lingyan & Zhu, Qunyi, 2014. "Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600 MWe utility boiler," Energy, Elsevier, vol. 74(C), pages 775-787.
    3. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Yang, Lianjie & Chen, Lizhe, 2011. "Concentrator performance within a centrally fuel-rich primary air burner: Influence of multiple levels," Energy, Elsevier, vol. 36(7), pages 4041-4047.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    2. Zeng, Lingyan & Li, Zhengqi & Zhao, Guangbo & Li, Jing & Zhang, Fucheng & Shen, Shanping & Chen, Lizhe, 2011. "The influence of swirl burner structure on the gas/particle flow characteristics," Energy, Elsevier, vol. 36(10), pages 6184-6194.
    3. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).
    4. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    5. Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
    6. Liu, Chunlong & Li, Zhengqi & Jing, Xinjing & Xie, Yiquan & Zhang, Qinghua & Zong, Qiudong, 2014. "Experimental investigation into gas/particle flow in a down-fired 350 MWe supercritical utility boiler at different over-fire air ratios," Energy, Elsevier, vol. 64(C), pages 771-778.
    7. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    8. Ling, Zhongqian & Zhou, Hao & Ren, Tao, 2015. "Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner," Energy, Elsevier, vol. 91(C), pages 110-116.
    9. Yan, Rong & Chen, Zhichao & Zhang, Bo & Zheng, Yu & Li, Zhengqi, 2022. "Impact of radial air staging on gas-particle flow characteristics in an industrial pulverized coal boiler," Energy, Elsevier, vol. 243(C).
    10. Li, Zixiang & Miao, Zhengqing & Zhou, Yan & Wen, Shurong & Li, Jiangtao, 2018. "Influence of increased primary air ratio on boiler performance in a 660 MW brown coal boiler," Energy, Elsevier, vol. 152(C), pages 804-817.
    11. Fang, Neng & Li, Zhengqi & Wang, Jiaquan & Zhang, Bin & Zeng, Lingyan & Chen, Zhichao & Wang, Haopeng & Liu, Xiaoying & Zhang, Xiaoyan, 2018. "Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner," Energy, Elsevier, vol. 165(PB), pages 432-441.
    12. Hua, Yun & Nie, Wen & Liu, Qiang & Yin, Shuai & Peng, Huitian, 2020. "Effect of wind curtain on dust extraction in rock tunnel working face: CFD and field measurement analysis," Energy, Elsevier, vol. 197(C).
    13. Chen, Zhichao & Wang, Zhenwang & Li, Zhengqi & Xie, Yiquan & Ti, Shuguang & Zhu, Qunyi, 2014. "Experimental investigation into pulverized-coal combustion performance and NO formation using sub-stoichiometric ratios," Energy, Elsevier, vol. 73(C), pages 844-855.
    14. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    15. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Effects of momentum ratio and velocity difference on combustion performance in lignite-fired pulverized boiler," Energy, Elsevier, vol. 165(PA), pages 825-839.
    16. Yonmo Sung & Seungtae Kim & Byunghwa Jang & Changyong Oh & Taeyun Jee & Soonil Park & Kwansic Park & Siyoul Chang, 2021. "Nitric Oxide Emission Reduction in Reheating Furnaces through Burner and Furnace Air-Staged Combustions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    17. Yuan, Zhenhua & Chen, Zhichao & Wu, Xiaolan & Zhang, Ning & Bian, Liguo & Qiao, Yanyu & Li, Jiawei & Li, Zhengqi, 2022. "An innovative low-NOx combustion technology for industrial pulverized coal boiler: Gas-particle flow characteristics with different radial-air-staged levels," Energy, Elsevier, vol. 260(C).
    18. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    19. Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    20. Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Wang, Lin & Chen, Lizhe, 2011. "Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region," Energy, Elsevier, vol. 36(1), pages 258-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2557-2564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.