IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i1p167-183.html
   My bibliography  Save this article

Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks

Author

Listed:
  • Zhou, Hao
  • Cen, Kefa
  • Fan, Jianren

Abstract

The present work introduces an approach to predict the nitrogen oxides (NOx) emission characteristics of a large capacity pulverized coal fired boiler with artificial neural networks (ANN). The NOx emission and carbon burnout characteristics were investigated through parametric field experiments. The effects of over-fire-air (OFA) flow rates, coal properties, boiler load, air distribution scheme and nozzle tilt were studied. On the basis of the experimental results, an ANN was used to model the NOx emission characteristics and the carbon burnout characteristics. Compared with the other modeling techniques, such as computational fluid dynamics (CFD) approach, the ANN approach is more convenient and direct, and can achieve good prediction effects under various operating conditions. A modified genetic algorithm (GA) using the micro-GA technique was employed to perform a search to determine the optimum solution of the ANN model, determining the optimal setpoints for the current operating conditions, which can suggest operators’ correct actions to decrease NOx emission.

Suggested Citation

  • Zhou, Hao & Cen, Kefa & Fan, Jianren, 2004. "Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks," Energy, Elsevier, vol. 29(1), pages 167-183.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:1:p:167-183
    DOI: 10.1016/j.energy.2003.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203002056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2003.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:1:p:167-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.