IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v4y2015i6p537-563.html
   My bibliography  Save this article

Steam power plant configuration, design, and control

Author

Listed:
  • Xiao Wu
  • Jiong Shen
  • Yiguo Li
  • Kwang Y. Lee

Abstract

type="graphical" xml:id="wene161-abs-0002">

Suggested Citation

  • Xiao Wu & Jiong Shen & Yiguo Li & Kwang Y. Lee, 2015. "Steam power plant configuration, design, and control," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(6), pages 537-563, November.
  • Handle: RePEc:bla:wireae:v:4:y:2015:i:6:p:537-563
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/wene.161
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Hao & Cen, Kefa & Fan, Jianren, 2004. "Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks," Energy, Elsevier, vol. 29(1), pages 167-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxia Zhu & Gang Zhao & Li Sun & Kwang Y. Lee, 2019. "Nonlinear Predictive Control for a Boiler–Turbine Unit Based on a Local Model Network and Immune Genetic Algorithm," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    2. Chen Chen & Lei Pan & Shanjian Liu & Li Sun & Kwang Y. Lee, 2018. "A Sustainable Power Plant Control Strategy Based on Fuzzy Extended State Observer and Predictive Control," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    3. Hinkelman, Kathryn & Anbarasu, Saranya & Wetter, Michael & Gautier, Antoine & Zuo, Wangda, 2022. "A fast and accurate modeling approach for water and steam thermodynamics with practical applications in district heating system simulation," Energy, Elsevier, vol. 254(PA).
    4. Sun, Li & Hua, Qingsong & Shen, Jiong & Xue, Yali & Li, Donghai & Lee, Kwang Y., 2017. "Multi-objective optimization for advanced superheater steam temperature control in a 300MW power plant," Applied Energy, Elsevier, vol. 208(C), pages 592-606.
    5. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    6. Wu, Xiao & Wang, Meihong & Shen, Jiong & Li, Yiguo & Lawal, Adekola & Lee, Kwang Y., 2019. "Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls," Applied Energy, Elsevier, vol. 238(C), pages 495-515.
    7. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
    8. Lazar Gitelman & Elena Magaril & Mikhail Kozhevnikov & Elena Cristina Rada, 2019. "Rational Behavior of an Enterprise in the Energy Market in a Circular Economy," Resources, MDPI, vol. 8(2), pages 1-19, April.
    9. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    10. Yong-Sheng Hao & Zhuo Chen & Li Sun & Junyu Liang & Hongxia Zhu, 2020. "Multi-Objective Intelligent Optimization of Superheated Steam Temperature Control Based on Cascaded Disturbance Observer," Sustainability, MDPI, vol. 12(19), pages 1-24, October.
    11. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    2. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    3. Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
    4. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    5. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    6. Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
    7. Fan, Weidong & Lin, Zhengchun & Li, Youyi & Zhang, Mingchuan, 2010. "Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology," Applied Energy, Elsevier, vol. 87(8), pages 2737-2745, August.
    8. Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
    9. Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
    10. Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
    11. Tang, Yuting & Ma, Xiaoqian & Lai, Zhiyi & Zhou, Daoxi & Lin, Hai & Chen, Yong, 2012. "NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere," Energy, Elsevier, vol. 40(1), pages 300-306.
    12. Azimi, Seyyed Shahabeddin & Namazi, Mohammad Hosain, 2015. "Modeling of combustion of gas oil and natural gas in a furnace: Comparison of combustion characteristics," Energy, Elsevier, vol. 93(P1), pages 458-465.
    13. Yu, Youhong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2007. "Neural-network based analysis and prediction of a compressor's characteristic performance map," Applied Energy, Elsevier, vol. 84(1), pages 48-55, January.
    14. Bolegenova, Saltanat & Askarova, Аliya & Georgiev, Aleksandar & Nugymanova, Aizhan & Maximov, Valeriy & Bolegenova, Symbat & Adil'bayev, Nurken, 2024. "Staged supply of fuel and air to the combustion chamber to reduce emissions of harmful substances," Energy, Elsevier, vol. 293(C).
    15. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    16. Wei, Zhongbao & Li, Xiaolu & Xu, Lijun & Cheng, Yanting, 2013. "Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 683-692.
    17. Mikulandrić, Robert & Lončar, Dražen & Cvetinović, Dejan & Spiridon, Gabriel, 2013. "Improvement of existing coal fired thermal power plants performance by control systems modifications," Energy, Elsevier, vol. 57(C), pages 55-65.
    18. Tan, Houzhang & Niu, Yanqing & Wang, Xuebin & Xu, Tongmo & Hui, Shien, 2011. "Study of optimal pulverized coal concentration in a four-wall tangentially fired furnace," Applied Energy, Elsevier, vol. 88(4), pages 1164-1168, April.
    19. Smrekar, J. & Potočnik, P. & Senegačnik, A., 2013. "Multi-step-ahead prediction of NOx emissions for a coal-based boiler," Applied Energy, Elsevier, vol. 106(C), pages 89-99.
    20. Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:4:y:2015:i:6:p:537-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.