IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i7p2352-2355.html
   My bibliography  Save this article

Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

Author

Listed:
  • Behera, Shuvashish
  • Mohanty, Rama Chandra
  • Ray, Ramesh Chandra

Abstract

Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg-1 flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation.

Suggested Citation

  • Behera, Shuvashish & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis," Applied Energy, Elsevier, vol. 87(7), pages 2352-2355, July.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2352-2355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00505-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohanty, Sujit Kumar & Behera, Shuvasis & Swain, Manas Ranjan & Ray, Ramesh Chandra, 2009. "Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation," Applied Energy, Elsevier, vol. 86(5), pages 640-644, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mishra, Abhishek & Sharma, Ajay K. & Sharma, Sumit & Bagai, Rashmi & Mathur, Anshu S. & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Lignocellulosic ethanol production employing immobilized Saccharomyces cerevisiae in packed bed reactor," Renewable Energy, Elsevier, vol. 98(C), pages 57-63.
    2. Dwidar, Mohammed & Lee, Siseon & Mitchell, Robert J., 2012. "The production of biofuels from carbonated beverages," Applied Energy, Elsevier, vol. 100(C), pages 47-51.
    3. Wirawan, Ferdian & Cheng, Chieh-Lun & Lo, Yung-Chung & Chen, Chun-Yen & Chang, Jo-Shu & Leu, Shao-Yuan & Lee, Duu-Jong, 2020. "Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process," Applied Energy, Elsevier, vol. 266(C).
    4. Wirawan, Ferdian & Cheng, Chieh-Lun & Kao, Wei-Chen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis," Applied Energy, Elsevier, vol. 100(C), pages 19-26.
    5. Dodić, Jelena M. & Vučurović, Damjan G. & Dodić, Siniša N. & Grahovac, Jovana A. & Popov, Stevan D. & Nedeljković, Nataša M., 2012. "Kinetic modelling of batch ethanol production from sugar beet raw juice," Applied Energy, Elsevier, vol. 99(C), pages 192-197.
    6. Karagoz, Pınar & Bill, Roslyn M. & Ozkan, Melek, 2019. "Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations," Renewable Energy, Elsevier, vol. 143(C), pages 741-752.
    7. Kyriakou, Maria & Chatziiona, Vasiliki K. & Costa, Costas N. & Kallis, Michalis & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2019. "Biowaste-based biochar: A new strategy for fermentative bioethanol overproduction via whole-cell immobilization," Applied Energy, Elsevier, vol. 242(C), pages 480-491.
    8. Rattanapan, Anuchit & Limtong, Savitree & Phisalaphong, Muenduen, 2011. "Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons," Applied Energy, Elsevier, vol. 88(12), pages 4400-4404.
    9. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    10. Ntihuga, Jean Nepomuscene & Senn, Thomas & Gschwind, Peter & Kohlus, Reinhard, 2013. "An evaluation of different bioreactor configurations for continuous bio-ethanol production," Applied Energy, Elsevier, vol. 108(C), pages 194-201.
    11. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    12. Tripti Agrawal & Afaque Quraishi & Shailesh Kumar Jadhav, 2019. "Bioethanol production from Madhuca latifolia L. flowers by a newly isolated strain of Pichia kudriavzevii," Energy & Environment, , vol. 30(8), pages 1477-1490, December.
    13. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    14. Lou, Rui & Wu, Shu-bin, 2011. "Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin," Applied Energy, Elsevier, vol. 88(1), pages 316-322, January.
    15. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojović, Ljiljana & Pejin, Dušanka & Rakin, Marica & Pejin, Jelena & Nikolić, Svetlana & Djukić-Vuković, Aleksandra, 2012. "How to improve the economy of bioethanol production in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6040-6047.
    2. Tripti Agrawal & Afaque Quraishi & Shailesh Kumar Jadhav, 2019. "Bioethanol production from Madhuca latifolia L. flowers by a newly isolated strain of Pichia kudriavzevii," Energy & Environment, , vol. 30(8), pages 1477-1490, December.
    3. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    4. Behera, Shuvashish & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2011. "Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs," Applied Energy, Elsevier, vol. 88(1), pages 212-215, January.
    5. Zhao, Xihua & Yi, Shi & Li, Hanxin, 2019. "The optimized co-cultivation system of Penicillium oxalicum 16 and Trichoderma reesei RUT-C30 achieved a high yield of hydrolase applied in second-generation bioethanol production," Renewable Energy, Elsevier, vol. 136(C), pages 1028-1035.
    6. Khoshnevisan, Benyamin & Shafiei, Marzieh & Rajaeifar, Mohammad Ali & Tabatabaei, Meisam, 2016. "Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach," Energy, Elsevier, vol. 114(C), pages 935-950.
    7. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    8. Canabarro, Nicholas I. & Alessio, Cláudia & Foletto, Edson L. & Kuhn, Raquel C. & Priamo, Wagner L. & Mazutti, Marcio A., 2017. "Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor," Renewable Energy, Elsevier, vol. 102(PA), pages 9-14.
    9. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    10. Mazaheri, Davood & Shojaosadati, Seyed Abbas & Mousavi, Seyyed Mohammad & Hejazi, Parisa & Saharkhiz, Saeed, 2012. "Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis," Applied Energy, Elsevier, vol. 99(C), pages 372-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2352-2355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.