IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2007i1p48-55.html
   My bibliography  Save this article

Neural-network based analysis and prediction of a compressor's characteristic performance map

Author

Listed:
  • Yu, Youhong
  • Chen, Lingen
  • Sun, Fengrui
  • Wu, Chih

Abstract

The difficulties, due to a lack of information about stage-by-stage axial-compressor performance, are analyzed. To overcome these issues, a three-layer back-propagation neural-network applied Levenberg-Marquardt algorithm is presented and discussed. The experimental data provided by manufacturers are used for the neural-network training. Through twice training, the compressor's performance map can be predicted. The results can be used for the development of an off-design model or overall dynamic simulation of the behaviour of a gas-turbine power-plant.

Suggested Citation

  • Yu, Youhong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2007. "Neural-network based analysis and prediction of a compressor's characteristic performance map," Applied Energy, Elsevier, vol. 84(1), pages 48-55, January.
  • Handle: RePEc:eee:appene:v:84:y:2007:i:1:p:48-55
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(06)00047-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gölcü, Mustafa & Sekmen, Yakup & ErduranlI, Perihan & Sahir Salman, M., 2005. "Artificial neural-network based modeling of variable valve-timing in a spark-ignition engine," Applied Energy, Elsevier, vol. 81(2), pages 187-197, June.
    2. Kalogirou, Soteris A., 2004. "Optimization of solar systems using artificial neural-networks and genetic algorithms," Applied Energy, Elsevier, vol. 77(4), pages 383-405, April.
    3. Yu, Youhong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Matlab/Simulink-based simulation for digital-control system of marine three-shaft gas-turbine," Applied Energy, Elsevier, vol. 80(1), pages 1-10, January.
    4. Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Kanit, E. Galip, 2004. "Use of artificial neural networks for mapping of solar potential in Turkey," Applied Energy, Elsevier, vol. 77(3), pages 273-286, March.
    5. López, G. & Batlles, F.J. & Tovar-Pescador, J., 2005. "Selection of input parameters to model direct solar irradiance by using artificial neural networks," Energy, Elsevier, vol. 30(9), pages 1675-1684.
    6. Zhou, Hao & Cen, Kefa & Fan, Jianren, 2004. "Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks," Energy, Elsevier, vol. 29(1), pages 167-183.
    7. Joly, R. B. & Ogaji, S. O. T. & Singh, R. & Probert, S. D., 2004. "Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine," Applied Energy, Elsevier, vol. 78(4), pages 397-418, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Yongjing & Duan, Liqiang & Pang, Liping, 2021. "Off-design performance analysis of a new 300 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 216(C).
    2. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    3. Zhen, Man & Dong, Xuezhi & Shao, Dong & Liu, Xiyang & Tan, Chunqing, 2024. "Research on high fidelity modelling and optimum designing of an adaptive cycle engine's starting process," Energy, Elsevier, vol. 294(C).
    4. Li, Zhihui & Liu, Yanming, 2017. "Blade-end treatment for axial compressors based on optimization method," Energy, Elsevier, vol. 126(C), pages 217-230.
    5. Likun Ren & Haiqin Qin & Zhenbo Xie & Jing Xie & Bianjiang Li, 2022. "A Thermodynamics-Oriented and Neural Network-Based Hybrid Model for Military Turbofan Engines," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    6. Yazar, Isil & Yavuz, Hasan Serhan & Yavuz, Arzu Altin, 2017. "Comparison of various regression models for predicting compressor and turbine performance parameters," Energy, Elsevier, vol. 140(P2), pages 1398-1406.
    7. Chaczykowski, M. & Osiadacz, A.J. & Uilhoorn, F.E., 2011. "Exergy-based analysis of gas transmission system with application to Yamal-Europe pipeline," Applied Energy, Elsevier, vol. 88(6), pages 2219-2230, June.
    8. Safiyullah, F. & Sulaiman, S.A. & Naz, M.Y. & Jasmani, M.S. & Ghazali, S.M.A., 2018. "Prediction on performance degradation and maintenance of centrifugal gas compressors using genetic programming," Energy, Elsevier, vol. 158(C), pages 485-494.
    9. Balerna, Camillo & Lanzetti, Nicolas & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher, 2020. "Optimal low-level control strategies for a high-performance hybrid electric power unit," Applied Energy, Elsevier, vol. 276(C).
    10. Cortés, O. & Urquiza, G. & Hernández, J.A., 2009. "Optimization of operating conditions for compressor performance by means of neural network inverse," Applied Energy, Elsevier, vol. 86(11), pages 2487-2493, November.
    11. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2014. "A component map tuning method for performance prediction and diagnostics of gas turbine compressors," Applied Energy, Elsevier, vol. 135(C), pages 572-585.
    12. Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
    13. Guan, Cong & Theotokatos, Gerasimos & Zhou, Peilin & Chen, Hui, 2014. "Computational investigation of a large containership propulsion engine operation at slow steaming conditions," Applied Energy, Elsevier, vol. 130(C), pages 370-383.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    2. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    3. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    4. Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
    5. Kisi, Ozgur, 2014. "Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach," Energy, Elsevier, vol. 64(C), pages 429-436.
    6. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    7. Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
    8. Sözen, Adnan & Ali Akçayol, M., 2004. "Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle," Applied Energy, Elsevier, vol. 79(3), pages 309-325, November.
    9. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    10. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    11. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    12. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    13. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    14. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    15. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    16. Marzo, A. & Trigo-Gonzalez, M. & Alonso-Montesinos, J. & Martínez-Durbán, M. & López, G. & Ferrada, P. & Fuentealba, E. & Cortés, M. & Batlles, F.J., 2017. "Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation," Renewable Energy, Elsevier, vol. 113(C), pages 303-311.
    17. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    18. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    19. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
    20. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2007:i:1:p:48-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.