Blade-end treatment for axial compressors based on optimization method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.03.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Benini, Ernesto & Biollo, Roberto, 2007. "Aerodynamics of swept and leaned transonic compressor-rotors," Applied Energy, Elsevier, vol. 84(10), pages 1012-1027, October.
- Yu, Youhong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2007. "Neural-network based analysis and prediction of a compressor's characteristic performance map," Applied Energy, Elsevier, vol. 84(1), pages 48-55, January.
- Cortés, O. & Urquiza, G. & Hernández, J.A., 2009. "Optimization of operating conditions for compressor performance by means of neural network inverse," Applied Energy, Elsevier, vol. 86(11), pages 2487-2493, November.
- Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Safiyullah, F. & Sulaiman, S.A. & Naz, M.Y. & Jasmani, M.S. & Ghazali, S.M.A., 2018. "Prediction on performance degradation and maintenance of centrifugal gas compressors using genetic programming," Energy, Elsevier, vol. 158(C), pages 485-494.
- Sun, Shijun & Wang, Songtao & Chen, Shaowen, 2020. "The influence of diversified forward sweep heights on operating range and performance of an ultra-high-load low-reaction transonic compressor rotor," Energy, Elsevier, vol. 194(C).
- Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Balerna, Camillo & Lanzetti, Nicolas & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher, 2020. "Optimal low-level control strategies for a high-performance hybrid electric power unit," Applied Energy, Elsevier, vol. 276(C).
- Guan, Cong & Theotokatos, Gerasimos & Zhou, Peilin & Chen, Hui, 2014. "Computational investigation of a large containership propulsion engine operation at slow steaming conditions," Applied Energy, Elsevier, vol. 130(C), pages 370-383.
- Yazar, Isil & Yavuz, Hasan Serhan & Yavuz, Arzu Altin, 2017. "Comparison of various regression models for predicting compressor and turbine performance parameters," Energy, Elsevier, vol. 140(P2), pages 1398-1406.
- Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
- Cortés, O. & Urquiza, G. & Hernández, J.A., 2009. "Optimization of operating conditions for compressor performance by means of neural network inverse," Applied Energy, Elsevier, vol. 86(11), pages 2487-2493, November.
- Safiyullah, F. & Sulaiman, S.A. & Naz, M.Y. & Jasmani, M.S. & Ghazali, S.M.A., 2018. "Prediction on performance degradation and maintenance of centrifugal gas compressors using genetic programming," Energy, Elsevier, vol. 158(C), pages 485-494.
- Likun Ren & Haiqin Qin & Zhenbo Xie & Jing Xie & Bianjiang Li, 2022. "A Thermodynamics-Oriented and Neural Network-Based Hybrid Model for Military Turbofan Engines," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
- Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2014. "A component map tuning method for performance prediction and diagnostics of gas turbine compressors," Applied Energy, Elsevier, vol. 135(C), pages 572-585.
- Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
- Colorado, D. & Hernández, J.A. & Rivera, W. & Martínez, H. & Juárez, D., 2011. "Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse," Applied Energy, Elsevier, vol. 88(4), pages 1281-1290, April.
- Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
- Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
- Li, Qubo & Piechna, Janusz & Müller, Norbert, 2011. "Numerical simulation of novel axial impeller patterns to compress water vapor as refrigerant," Energy, Elsevier, vol. 36(5), pages 2773-2781.
- Zhang, Weihao & Zou, Zhengping & Ye, Jian, 2012. "Leading-edge redesign of a turbomachinery blade and its effect on aerodynamic performance," Applied Energy, Elsevier, vol. 93(C), pages 655-667.
- Finn, Joshua & Wagner, John & Bassily, Hany, 2010. "Monitoring strategies for a combined cycle electric power generator," Applied Energy, Elsevier, vol. 87(8), pages 2621-2627, August.
- Li, Qubo & Piechna, Janusz & Müller, Norbert, 2011. "Design of a novel axial impeller as a part of counter-rotating axial compressor to compress water vapor as refrigerant," Applied Energy, Elsevier, vol. 88(9), pages 3156-3168.
- Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.
- Lu, Hanan & Li, Qiushi & Pan, Tianyu, 2016. "Optimization of cantilevered stators in an industrial multistage compressor to improve efficiency," Energy, Elsevier, vol. 106(C), pages 590-601.
- Zhen, Man & Dong, Xuezhi & Shao, Dong & Liu, Xiyang & Tan, Chunqing, 2024. "Research on high fidelity modelling and optimum designing of an adaptive cycle engine's starting process," Energy, Elsevier, vol. 294(C).
- Labus, J. & Hernández, J.A. & Bruno, J.C. & Coronas, A., 2012. "Inverse neural network based control strategy for absorption chillers," Renewable Energy, Elsevier, vol. 39(1), pages 471-482.
More about this item
Keywords
Blade-end treatment; Optimization; Genetic algorithm; Artificial Neural Network; Axial compressor;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:217-230. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.