IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v78y2004i4p397-418.html
   My bibliography  Save this article

Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine

Author

Listed:
  • Joly, R. B.
  • Ogaji, S. O. T.
  • Singh, R.
  • Probert, S. D.

Abstract

The Tristar aircraft, operated by the Royal Air Force, fly many thousands of hours per year in the transport and air-to-air refuelling roles. A large amount of engine data is recorded for each of the Rolls-Royce RB211-524B4 engines: it is used to aid the maintenance process. Data are also generated during test-bed engine ground-runs after repair and overhaul. In order to use recorded engine data more effectively, this paper assesses the feasibility of a pro-active engine diagnostic-tool using artificial neural networks (ANNs). Engine-health monitoring is described and the theory behind an ANN is described. An engine diagnostic structure is proposed using several ANNs. The top level distinguishes between single-component faults (SCFs) and double-component faults (DCFs). The middle-level class includes components, or component pairs, which are faulty. The bottom level estimates the values of the engine-independent parameters, for each engine component, based on a set of engine data using dependent parameters. The DCF results presented in this paper illustrate the potential for ANNs as diagnostic tools. However, there are also a number of features of ANN applications that are user-defined: ANN designs; the number of training epochs used; the training function employed; the method of performance assessment; and the degree of deterioration for each engine-component's performance parameter.

Suggested Citation

  • Joly, R. B. & Ogaji, S. O. T. & Singh, R. & Probert, S. D., 2004. "Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine," Applied Energy, Elsevier, vol. 78(4), pages 397-418, August.
  • Handle: RePEc:eee:appene:v:78:y:2004:i:4:p:397-418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00202-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    2. Yu, Youhong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2007. "Neural-network based analysis and prediction of a compressor's characteristic performance map," Applied Energy, Elsevier, vol. 84(1), pages 48-55, January.
    3. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    4. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    5. Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
    6. Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
    7. Fast, M. & Palmé, T., 2010. "Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant," Energy, Elsevier, vol. 35(2), pages 1114-1120.
    8. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    9. Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.
    10. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    11. Fang, Xiande & Dai, Qiumin & Yin, Yanxin & Xu, Yu, 2010. "A compact and accurate empirical model for turbine mass flow characteristics," Energy, Elsevier, vol. 35(12), pages 4819-4823.
    12. Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
    13. Feng Lu & Jinquan Huang & Yiqiu Lv, 2013. "Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach," Energies, MDPI, vol. 6(1), pages 1-22, January.
    14. Fang, Xiande & Xu, Yu, 2011. "Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis," Energy, Elsevier, vol. 36(5), pages 2937-2942.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:78:y:2004:i:4:p:397-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.