IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics030626192101504x.html
   My bibliography  Save this article

Coordinating energy management systems in smart cities with electric vehicles

Author

Listed:
  • Lotfi, Mohamed
  • Almeida, Tiago
  • Javadi, Mohammad S.
  • Osório, Gerardo J.
  • Monteiro, Cláudio
  • Catalão, João P.S.

Abstract

The rapid proliferation of Electric Vehicles (EVs) creates an inherent link between the previously independent transport and power sectors. This is especially relevant in the smart cities paradigm, which focuses on optimizing resource management using modern software tools and communication infrastructures. The optimal management of energy resources is of key importance, and with mobile EVs playing a pivotal role in smart city power flows, the coordination of energy management systems (EMSs) at their parking locations can bear global benefits. In this study the coordination between home energy management systems (HEMSs) and EV parking lot management systems (PLEMS) is proposed, modeled, and simulated, as a new contribution to earlier studies. The EMSs coordinate through partially sharing individual EV schedules and without sharing private information. Missing information is completed through public cloud repositories and services. The HEMS and PLEMS are implemented using mixed-integer linear programming (MILP). The proposed coordination framework is computationally implemented and simulated based on a real-life case study. The results show that the proposed EMS coordination framework is both technically beneficial for power grids and economically beneficial for EV owners.

Suggested Citation

  • Lotfi, Mohamed & Almeida, Tiago & Javadi, Mohammad S. & Osório, Gerardo J. & Monteiro, Cláudio & Catalão, João P.S., 2022. "Coordinating energy management systems in smart cities with electric vehicles," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s030626192101504x
    DOI: 10.1016/j.apenergy.2021.118241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101504X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    2. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Arévalo, Paul & Turky, Rania A. & Jurado, Francisco, 2022. "A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations," Energy, Elsevier, vol. 253(C).
    3. Islam, Md. Zahidul & Lin, Yuzhang & Vokkarane, Vinod M. & Yu, Nanpeng, 2023. "Robust learning-based real-time load estimation using sparsely deployed smart meters with high reporting rates," Applied Energy, Elsevier, vol. 352(C).
    4. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    5. Li, Yipu & Su, Hao & Zhou, Yun & Chen, Lixia & Shi, Yiwei & Li, Hengjie & Feng, Donghan, 2023. "Two-stage real-time optimal electricity dispatch strategy for urban residential quarter with electric vehicles’ charging load," Energy, Elsevier, vol. 268(C).
    6. Gržanić, Mirna & Capuder, Tomislav, 2023. "Collaboration model between Distribution System Operator and flexible prosumers based on a unique dynamic price for electricity and flexibility," Applied Energy, Elsevier, vol. 350(C).
    7. Hassan Shokouhandeh & Mehrdad Ahmadi Kamarposhti & Fariba Asghari & Ilhami Colak & Kei Eguchi, 2022. "Distributed Generation Management in Smart Grid with the Participation of Electric Vehicles with Respect to the Vehicle Owners’ Opinion by Using the Imperialist Competitive Algorithm," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    8. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    9. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Rezaee Jordehi, Ahmad & Jurado, Francisco, 2022. "A Stochastic-IGDT model for energy management in isolated microgrids considering failures and demand response," Applied Energy, Elsevier, vol. 317(C).
    10. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    2. Libor Dražan & René Križan & Miroslav Popela, 2021. "Design and Testing of a Low-Tech DEW Generator for Determining Electromagnetic Immunity of Standard Electronic Circuits," Energies, MDPI, vol. 14(11), pages 1-15, May.
    3. Konstantinos Kotsalos & Ismael Miranda & Jose Luis Dominguez-Garcia & Helder Leite & Nuno Silva & Nikos Hatziargyriou, 2020. "Exploiting OLTC and BESS Operation Coordinated with Active Network Management in LV Networks," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    4. Mohamed Lotfi & Mohammad Javadi & Gerardo J. Osório & Cláudio Monteiro & João P. S. Catalão, 2020. "A Novel Ensemble Algorithm for Solar Power Forecasting Based on Kernel Density Estimation," Energies, MDPI, vol. 13(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s030626192101504x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.