IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v314y2022ics0306261922003452.html
   My bibliography  Save this article

GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model

Author

Listed:
  • Yu, Qing
  • Li, Weifeng
  • Zhang, Haoran
  • Chen, Jinyu

Abstract

With the emergence of big geospatial data and the breakthrough of massive data processing, taxi-sharing offers the public a novel transportation mode with high comfort but low cost. However, designing a taxi-sharing system to effectively allocate taxi resources and provides high public acceptance services is an urgent problem to be solved. Furthermore, to what extent the taxi-sharing can be an eco-friendly service without bringing extra pressure to urban emission, fuel consumption, and transportation system is still an unanswered question. This paper proposes a methodology framework to design a taxi-sharing system with driver routing probability based matching and dispatching algorithms. The methodology is capable of matching multiple taxi trips into a sharing trip, with consideration of temporal and spatial feasibilities. The matching of sharing trips includes the determination of which trips to match and the sequence of the destinations. To examine the potential of operation efficiency improved and fuel consumption reduced in taxi-sharing, three scenarios are proposed with different constraints, representing different operation strategies. The sharing trips are then dispatched to the taxis. The potential of operating performance improvement and the potential of fuel consumption reduction are analyzed in the three scenarios. It is found that the delivery part of taxi-sharing may produce more travel distance because of the detour. The key factor for taxi-sharing service to reduce Vehicle Kilometres Travelled is the idle trips and the taxi resources saved. Considering both delivery trips and idle trips together, although taxi-sharing can reduce total fuel consumption in the city, it may increase traffic pressure in certain range area, especially in the key road sections or intersections in the urban road network and the area with high traffic demand.

Suggested Citation

  • Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003452
    DOI: 10.1016/j.apenergy.2022.118923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922003452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-Long Shang & Yanyan Chen & Huibo Bi & Haoran Zhang & Changxi Ma & Washington Y. Ochieng, 2020. "Statistical Characteristics and Community Analysis of Urban Road Networks," Complexity, Hindawi, vol. 2020, pages 1-21, September.
    2. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    3. Sihai Zhang & Zhiyang Wang, 2016. "Inferring Passenger Denial Behavior of Taxi Drivers from Large-Scale Taxi Traces," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-21, November.
    4. Zhang, Haoran & Song, Xuan & Xia, Tianqi & Yuan, Meng & Fan, Zipei & Shibasaki, Ryosuke & Liang, Yongtu, 2018. "Battery electric vehicles in Japan: Human mobile behavior based adoption potential analysis and policy target response," Applied Energy, Elsevier, vol. 220(C), pages 527-535.
    5. Zhang, Haoran & Chen, Jinyu & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke, 2020. "Mobile phone GPS data in urban ride-sharing: An assessment method for emission reduction potential," Applied Energy, Elsevier, vol. 269(C).
    6. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    7. Zhang, Haoran & Yan, Jinyue & Yu, Qing & Obersteiner, Michael & Li, Wenjing & Chen, Jinyu & Zhang, Qiong & Jiang, Mingkun & Wallin, Fredrik & Song, Xuan & Wu, Jiang & Wang, Xin & Shibasaki, Ryosuke, 2021. "1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown," Applied Energy, Elsevier, vol. 283(C).
    8. Yang, Chao & Du, Siyu & Li, Liang & You, Sixong & Yang, Yiyong & Zhao, Yue, 2017. "Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 203(C), pages 883-896.
    9. Wen-Long Shang & Yanyan Chen & Chengcheng Song & Washington Y. Ochieng, 2020. "Robustness Analysis of Urban Road Networks from Topological and Operational Perspectives," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, August.
    10. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    11. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    12. Zhang, Haoran & Song, Xuan & Long, Yin & Xia, Tianqi & Fang, Kai & Zheng, Jianqin & Huang, Dou & Shibasaki, Ryosuke & Liang, Yongtu, 2019. "Mobile phone GPS data in urban bicycle-sharing: Layout optimization and emissions reduction analysis," Applied Energy, Elsevier, vol. 242(C), pages 138-147.
    13. Cai, Hua & Wang, Xi & Adriaens, Peter & Xu, Ming, 2019. "Environmental benefits of taxi ride sharing in Beijing," Energy, Elsevier, vol. 174(C), pages 503-508.
    14. Qian, Xinwu & Zhang, Wenbo & Ukkusuri, Satish V. & Yang, Chao, 2017. "Optimal assignment and incentive design in the taxi group ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 208-226.
    15. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Qing & Xie, Yingkun & Li, Weifeng & Zhang, Haoran & Liu, Xiaolei & Shang, Wen-Long & Chen, Jinyu & Yang, Dongyuan & Yan, Jinyue, 2022. "GPS data in urban bicycle-sharing: Dynamic electric fence planning with assessment of resource-saving and potential energy consumption increasement," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Rongjian & Ding, Chuan & Gao, Jian & Wu, Xinkai & Yu, Bin, 2022. "Optimization and evaluation for autonomous taxi ride-sharing schedule and depot location from the perspective of energy consumption," Applied Energy, Elsevier, vol. 308(C).
    2. Zhang, Haoran & Chen, Jinyu & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke, 2020. "Mobile phone GPS data in urban ride-sharing: An assessment method for emission reduction potential," Applied Energy, Elsevier, vol. 269(C).
    3. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    4. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    5. Qiu, Dawei & Wang, Yi & Sun, Mingyang & Strbac, Goran, 2022. "Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 313(C).
    6. Wenjing Wang & Yanyan Chen & Haodong Sun & Yusen Chen, 2021. "Multiple Binary Classification Model of Trip Chain Based on the Fusion of Internet Location Data and Transport Data," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    7. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    8. Yi, Wenjing & Yan, Jie, 2020. "Energy consumption and emission influences from shared mobility in China: A national level annual data analysis," Applied Energy, Elsevier, vol. 277(C).
    9. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2021. "Impacts of shared automated vehicles on airport access and operations, with opportunities for revenue recovery: Case Study of Austin, Texas," Research in Transportation Economics, Elsevier, vol. 90(C).
    10. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    11. Schulte-Fischedick, Marta & Shan, Yuli & Hubacek, Klaus, 2021. "Implications of COVID-19 lockdowns on surface passenger mobility and related CO2 emission changes in Europe," Applied Energy, Elsevier, vol. 300(C).
    12. Yu, Qing & Xie, Yingkun & Li, Weifeng & Zhang, Haoran & Liu, Xiaolei & Shang, Wen-Long & Chen, Jinyu & Yang, Dongyuan & Yan, Jinyue, 2022. "GPS data in urban bicycle-sharing: Dynamic electric fence planning with assessment of resource-saving and potential energy consumption increasement," Applied Energy, Elsevier, vol. 322(C).
    13. Schuster, Hannah & Polleres, Axel & Wachs, Johannes, 2024. "Stress-testing road networks and access to medical care," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    14. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    15. Mohammad Peyman & Pedro J. Copado & Rafael D. Tordecilla & Leandro do C. Martins & Fatos Xhafa & Angel A. Juan, 2021. "Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems," Energies, MDPI, vol. 14(19), pages 1-26, October.
    16. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    17. Lei, Chao & Jiang, Zhoutong & Ouyang, Yanfeng, 2020. "Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 60-75.
    18. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    19. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    20. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.